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Modified from Blakey and Gubitosa (1983).

FACIES TERMINOLOGY AND
METHODOLOGY

Lateral- and vertical-facies studies were conducted
throughout the area to examine the spatial variability of
sandstone units in the area of the Cane Creek anticline.
Lithofacies were described, interpreted (table 1), and sub-
divided into architectural elements based on internal orga-
nization (lithofacies associations), bounding relationships,
and external geometry (table 2). Three-dimensional facies
architecture was described using two-dimensional vertical
profiles. The profiles were developed by mapping bound-
ing surfaces and lithofacies in the field on photomosaics.
The approach used here is similar to the methodology of
Allen (1983) and Miall (1985, 1988), but the hierarchy of
bounding surfaces was redefined akin to an adaptation by
Soegaard (1990). The hierarchy of facies and correspond-
ing bounding surfaces that separate individual architec-
tural elements is explained below.

The architectural elements (table 2) are defined by a
sixfold hierarchy of bedding contacts (Miall, 1985, 1983).
First-order contacts bound or envelop individual facies
and record boundaries within microform and mesoform
deposits in which little or no internal erosion is apparent.
Deposits bounded by these surfaces represent the continu-
ous sedimentation of a train of bedforms of similar type
at a given point in time (Miall, 1985). Second-order con-
tacts outline cosets of genetically related facies (facies
sequence) and define groups of microform and mesoform
deposits. Mesoforms include larger scale bedforms such
as dunes and antidunes (Jackson, 1975). Second-order sur-
faces separate facies sequences (Soegaard, 1990) and

indicate changes in flow conditions or flow direction but
no significant break in time. Lithofacies above and below
a second-order surface can be different, and only minor
scour is associated with the contacts. Third- and fourth-
order surfaces bound genetically related cosets and define
larger scale depositional elements that constitute facies
associations. Third-order surfaces outline single deposi-
tional architectural elements and indicate changes in flu-
vial stage or bedform orientation but no significant
change in sedimentary style. For example, third-order con-
tacts bound laminated sand sheets, gravel bars, sandy bed-
forms, smaller channels, and individual lateral-accretion
units in a lateral-accretion macroform.

In the scheme of Miall (1985), fourth-order contacts
represent the upper bounding surfaces of macroforms and
are typically planar to convex upward (for example, larger
channels and lateral- and downstream-accreting macro-
forms). A macroform represents a large-scale depositional
feature that reflects the cumulative effect of many
dynamic events over periods of several years to thousands
of years (Jackson, 1975). Soegaard (1990) showed, how-
ever. that fourth-order surfaces are not restricted to the
upper surfaces of macroforms, and he redefined fourth-
order contacts as those that encase a “complex” of
stacked, similar depositional elements. His definition is
used in this study. A grouping or assemblage of sedimen-
tation units that are genetically related by facies and (or)
paleocurrent direction define a “complex” (Allen, 1983).
Complexes occur singly or can be composed of stacked
“storys” (Friend and others, 1979). For example, a chan-
nel element can consist of several discrete channel fills
and is thus considered a complex.
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Table 1. Summary of lithofacies, characteristics, and depositional interpretations.
[Modified from Miall (1978)]

Geometry

Interpretation

Grain size
Facies Abundance and texture Structure
Gm Common Granule to cobble Massive to crude horizontal
size; poorly sorted stratification; clast-supported
fabric
Gt Common Granule to cobble Trough cross-stratified;
size; poorly sorted reactivation surfaces
Gp Rare Granule to cobble Planar cross-stratified
size; poorly sorted
St Common Granule to sand Trough crossbedded; reactivation
size; well to poorly surfaces
sorted
Sp Common Granule to sand Planar tabular cross-stratified
size; well to poorly
sorted
Sr Abundant Fine to very fine Ripple stratification of all types
sand; well sorted including climbing-ripple
crosslamination
Sh/ Abundant Fine to medium Horizontal and low-angle
Si sand size; well laminations; parting lineations
sorted
Ss Rare Granule to sand Scour-fill sand
size; well to poorly
sorted
Se Common Sand size with Erosional scours filled with
mudstone massive to crude crossbedding
intraclasts; muddy
matrix
Fm Abundant Fine-grained mud Massive; structureless; color
and silt mottling; pedogenic
modification; mud drapes
H Abundant Very fine sand, silt, Thin horizontal laminations or

or mud

heterolithic interbedding of sand-
stone, siltstone, and mudstone;
minor bioturbation, pedogenic
modification, and color mottling

Lens to narrow sheet;
wedge shaped; flat
scoured base

Lensoid; fills concave-
upward base

Lens to narrow tabular
sheets; scours fills; flat-
scoured or slightly
irregular base

Lens to narrow sheet;
ribbons

Narrow to broad sheets;
slightly irregular top; flat
base

Narrow to broad sheets;
associated with mudstone

Broad sheets

Symmetrical hollows;
sand file conforms to base
of scour

Erosional base of
individual sand bodies

Thin tabular sequences;
thin lenses in sand bodies

Thin to thick tabular
sequences to podlike or
lensoid bodies

Longitudinal bars; intraforma-
tional channel-lag deposits.

Channel fills; transverse bar.

Transverse to linguoid bars.

Dunes; lower flow regime.

Sand waves; linguoid or
transverse bars; lower flow
regime.

Crevasse-splay and overbank
deposits; waning flood flow.

Plane-bedded simple bars and bar
tops; shallow upper flow regime.

Bar-top dissection by fluctuating
discharge.

Intraformation lag deposits of
flashflood derivation.

Floodplain deposits; lacustrine;
bar tops; abandoned channels.

Ponding in abandoned channels;
overbank or waning flood
deposits; mud drapes; upper flow
regime in channels and lower
flow regime on floodplains.

Fifth-order surfaces are laterally extensive and bound

major sand bodies or groupings of complexes. These

surfaces encompass entire depositional environments char-
acterized by genetically related architectural elements spe-

ALLUVIAL ARCHITECTURE AND
PALEOENVIRONMENTAL ANALYSIS

F9

cific to that environment (Miall, 1985: Soegaard, 1990).
They are generally planar to slightly concave upward and
may be marked by local scours and basal lag gravels. Sixth-
order surfaces envelop large-scale depositional features,
such as groups of channels or paleovalleys, that typically
constitute a mappable stratigraphic unit such as a formation,
member, or submember.

The Chinle deposits in the study area are dominated by
four narrow to broad sheet sand bodies. These sand bodies
correlate to the lower, middle, and upper Kane Springs units
of Blakey and Gubitosa (1983) and the Black Ledge (fig. 7).
The Kane Springs sand bodies are designated herein the
Kane Springs 1, 2, and 3 sand bodies. Sand bodies were
examined in both transverse (perpendicular to paleoflow
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Table 2. Architectural elements common to deposits of the Chinle Formation in the study area.
[Architectural elements modified from Miall (1985, 1988). Lithofacies are described in table 1]

Element Lithofacies assemblage Geometry Relationships
Channel (CH) Gt, Gm, Gp, St, Sp, Sh, SI, Lens or narrow sheet; Can contain any of the other elements; smaller channels
Sr, Se, Ss, Fl broad to steep, concave- defined by third-order surfaces; a channel complex contains

upward erosional base

Lateral-accretion
macroform (LA)

St, Sp, Sh, S}, Sr, Se, Gm,
Gt, F1

Downstream-accreting
macroform (DA)

St, Sp, Sh, SI, Sr, Se, Ss

Wedge or sheet

Lenticular; flat base

similar stacked elements floored by fourth-order surfaces.

Characterized by third-order lateral-accretion surfaces; can
compose the fill of a channel complex.

Tabular bedforms having convex-upward second-order
internal erosion surfaces and upper bounding surfaces.

Gravel bars and bedforms Gm, Gt, Gp, Se Tabular to sheet Tabular bodies 1-3 m thick; commonly interbedded with

(GB) sandy bedforms.

Sandy bedforms (SB) St, Sh, SI, Sp, Sr, Se Lens or sheet Fining-upward from lithofacies Se or St at base to
lithofacies Sh/S]; lithofacies Sp rare; third-order flat to
undulose erosional surfaces with lags separate similiar
stacked sandy bedform or gravel bar and bedform elements.

Laminated sand sheets (LS)  Sh, S, minor St, Sp, Sr Sheet, 0.5-5 m thick Bound by flat to undulose third-order erosional surfaces;
lithofacies Se ubiquitous at base; lacks fining- or
coarsening-upward facies sequences.

Overbank fines (OF) Fl, Fm Thin to thick tabular Rhythmically or massively bedded; abundant subaerial

sequences features; may fill abandoned channels; may lack bedding

due to burrowing or pedogenesis.

direction) and longitudinal sections (parallel with paleoflow
direction) (fig. 2). Sand bodies are classified as single-story
or multistory (fig. 9). Those having width to height ratios of
less than 15 are ribbons, and those having ratios of greater
than 15 are sheets (Friend and others, 1979). Blakey and
Gubitosa (1984) defined narrow sheets as having width to
height ratios of less than 100 and regionally extensive sheets
as having width to height ratios of greater than 100.

For each of these four sand bodies, I present description
and a paleoenvironmental interpretation. Architectural char-
acteristics are summarized in table 3. Only those aspects that
are crucial to understanding the environment of deposition
are included herein; for other details and profiles, see Hazel
(1991). Profiles used to examine the sand bodies consist of a
photomosaic, a facies and bounding-surface map, and a
stratigraphic unit interpretation. Architectural elements are
labeled according to codes listed in table 2 and lithofacies
according to codes listed in table 1. Circled numbers define
the order of the erosional bounding surface. Paleocurrents
within individual facies are denoted by arrows oriented rela-
tive to the outcrop (for example, paleocurrents that parallel
the outcrop are represented by horizontal arrows).

KANE SPRINGS 1 SAND BODY—
LOW- AND HIGH-SINUOSITY STREAMS

DESCRIPTION

The Kane Springs 1 sand body crops out as a ledge and
forms a prominent laterally extensive single-story to

SAND-BODY TYPES

RIBBONS
Width to height < 15

Multistory

Simple (single story)

Height

— Width —

SHEETS
Narrow, width to height 15-100; broad, width to height > 100

Simple

Muitistory
. e

Figure 9. Classification of fluvial sand bodies. Modified from
Blakey and Gubitosa (1984).

multistory sheet sandstone. Its width to height ratio is
almost invariably greater than 100. The thickness of the
sand body ranges from 0 to 30 m and averages 10 m. The
base, which has as much as 5 m local relief on the underly-
ing Moenkopi or on the mottled strata of the Chinle, is a
sixth-order erosion surface (fig. 10). This surface is defined
by its erosive nature and by the presence of overlying
intraformational facies Gm or facies Gt. The surface is eas-
ily discernible due to the truncation of colorful paleosols of
the Moenkopi or mottled strata. The Kane Springs 1 sand
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floodplain tilting due to uplift of the Moab salt anticline
and salt-withdrawal subsidence between the Moab and
Cane Creek anticlines (Kings Bottom syncline). Although
it is likely that the system migrated down the tectonic tilt
toward the southwest, the complex stacking of the prefer-
entially abandoned meanderloops (fig. 19) is suggestive of
confinement between the two anticlines.

Channel-fill deposits reflect the nature of the stream
diversion process (Hopkins, 1985). Topographically trig-
gered avulsion occurs when a river aggrades vertically until
topography is increased such that the channel improves its
profile by switching positions down a more suitable path
(Alexander and Leeder, 1987). The rate of topographic
growth in the study area may have been enhanced by prefer-
ential flooding of the downtilted side of the floodplain as the
Kane Springs and Black Ledge channels moved toward the
position of maximum subsidence; however, channel migra-
tion and filling could also have been a function of other
parameters that control avulsion.

ALLOCYCLIC CONTROLS

Extrabasinal controls such as tectonic-induced subsid-
ence, climate, and source terrane behavior are not likely
controls given the depositional patterns in the study area;
however, knowledge of these allocyclic controls on allu-
vial architecture is critical to a meaningful evaluation of
Chinle architecture. The effects of eustacy on base-level
changes were not examined in this study. The Chinle dep-
ositional system was in a partly landlocked basin, and the
effects of sea-level changes are difficult to correlate with-
out precise age constraints.

The Kane Springs units are time correlative to the Pet-
rified Forest and Owl Rock Members, and one would expect
similar cyclic thick floodbasin and soil deposits and widely
scattered ribbon sand bodies in these units. Blakey and
Gubitosa (1984) reasoned that preservation of these mem-
bers involved a moderately rapid rate of basin subsidence
relative to rate of sedimentation; however, Chinle strata in
the study area do not contain well-developed paleosols. At
best, only color mottling and minor nodule formation, indic-
ative of a floodbasin environment experiencing periodic
wetting and drying (Bown and Kraus, 1981), is present
proximal to the Cane Creek anticline. The predominance of
pedogenic nodules as clasts in Kane Springs strata and
Black Ledge conglomerates indicates that soil-forming pro-
cesses were operating nearby because such clasts do not
survive long in a dynamic system (Karcz, 1969). It is rea-
sonable to conclude that decreased rates of basin subsidence
as aresult of differential subsidence and uplift related to salt
diapirism led to sheet sand-body development; however,
because there was no constancy of river type or rate of avul-
sion, it is difficult to test the importance of subsidence rate

on sandstone geometry in accordance to the models of Allen
(1978) or Bridge and Leeder (1979).

Uplift of the ancestral Uncompahgre source area, pro-
viding pulses of coarse sediment (allocyclic mechanism), is
not favored as a control on the depositional cycles. This
mechanism would reflect progradation of an entire fluvial
system and would be characterized by symmetrical cycles
that coarsen and then fine upward (see, for example, Steel
and others, 1977; Steel and Aasheim, 1978). The Kane
Springs strata clearly do not represent basinwide facies vari-
ations and do not contain extrabasinal-derived detritus
coarser than medium-grained quartz sand. There is no indi-
cation that size availability played any role in differing allu-
vial architectures. Source-rock control was locally
important during deposition of the basal mottled strata when
initial uplift of upper Paleozoic chert-bearing limestone pro-
vided an abundance of chert pebbles.

Variations in climate can cause changes in sediment
grain size and in depositional style as a result of fluctuating
discharge and weathering modes (Miall, 1980). The three
Kane Springs sand bodies and the Black Ledge were depos-
ited in fluvial systems subject to episodic flash floods. For
example, laminated sheet elements indicate that flows trav-
eled as sheetfloods on the order of tens of kilometers. The
abundance of wood, carbonaceous horizons, and terrestrial
fossils throughout the sequence suggests that water was
abundant. The evidence for fluctuating water tables and the
repeated occurrence of desiccation cracks suggest that the
environment was episodically wet and the rainfall possibly
seasonal. Clastic-carbonate couplets in Owl Rock laminated
limestone have been attributed to seasonal influx of clastic
sediment (Dubiel, 1989). These observations match the
interpretation of Dubiel and others (1991) in which the
Chinle climate in southeast Utah was tropical-monsoonal.
The abundance of eolian sand-sheet deposits at the top of
the Chinle suggests that the climate became drier at the
close of Chinle deposition (Blakey and Gubitosa, 1984;
Dubiel, 1989; Hazel, 1991), but the color mottling in the
sand sheets is indicative of at least some seasonal flooding
(Kocurek and Nielson, 1986).

Blakey and Gubitosa (1984) ruled out climate as a
major factor in controlling deposition because the sheet-rib-
bon-sheet geometry in the Kane Springs strata indicates that
controls on sand-body geometry changed at least twice dur-
ing aggradation of the system. They noted that this large-
scale cyclic change is not evident in immediately adjacent
units of the Petrified Forest and Owl Rock Members. Dubiel
(1989) suggested that long-term climatic fluctuations are
represented by large-scale interbedding of siltstone and
limestone in Owl Rock strata; however, purely seasonal cli-
matic controls would tend to produce coarser, more imma-
ture grains in arid cycles and finer, more mature grains in
humid cycles. This was not observed in the Kane Springs
strata and Black Ledge. The sand bodies contain consistent
indication of seasonal climate subject to flash-flood events
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throughout Chinle time, thus arguing for controls other than
climatic variations.

CONCLUSIONS

Alluvial architecture of the Chinle Formation in the
study area in the Paradox Basin of southeastern Utah was
modified through time in response to salt diapirism rather
than to changes in basinwide subsidence rates, climate,
base-level, or sediment supply. Evidence presented herein
shows that these important allocyclic controls were of sec-
ondary importance in generating the different styles of
architecture in the Salt Anticline region. The Chinle
sequence in the study area is dominated by broad multistory
sheet sand bodies that are unique to this region. Channel
morphology changed significantly within only one interval
(single-story or weakly multistory ribbon and narrow sheet
sand bodies in the Kane Springs 2 sand body), and the other
units, although the products of different fluvial styles, have
similar sand-body geometry and degree of interconnected-
ness. Only near the end of Chinle deposition is there evi-
dence to suggest the development of vastly different climate
or new source areas. Sheet development resulted from
decreased rates of localized basin subsidence due to intraba-
sinal uplift of salt structures. Intrabasinal tectonic activity
altered stream gradients and subsidence rates, which in
turned governed sinuosity, flow regime, energy levels, and
sediment distribution. During quiescence of the salt struc-
tures, moderately rapid basinwide subsidence produced rib-
bon sand bodies enveloped by overbank deposits.

Evidence supporting intrabasinal tectonism as the prin-
cipal control on Kane Springs and Black Ledge depositional
systems includes the following.

1. Cycles of fluvial sand-body sheet geometry are
separated by extensive fifth- and sixth-order erosional
bounding surfaces, some of which represent intraforma-
tional unconformities.

2. Abrupt changes in fluvial style are indicated by
significant facies changes both within and between sand
bodies. Highly variable lithologies resulted from changes in
depositional environments in areas where salt movement
occurred.

3. Fluvial sand bodies thin, display less interconnect-
edness, or are absent over the Cane Creek anticline. Post-
depositional erosion between aggradational events was most
likely caused by localized diapiric uplift of the Cane Creek
and Moab salt anticlines.

4. The depositional axis of each fluvial sand body
was controlled by gentle surface flexing between salt anti-
clines. Paleocurrents in all the fluvial units are remarkably
consistent with one another and parallel the trend of the salt
anticlines.

5. Variations in fluvial sand-body story thickness are
a result of differential subsidence in intervening synclinal
areas.

6. Heterolithic facies in the Kane Springs 2 sand
body provide evidence for topographically triggered
avulsion via tectonic tilting. The preferential preservation of
bounding surfaces and the unique channel fill are attributed
to tilting of the depositional slope.
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