A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants.

Custom Soil Resource Report for San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Cross Section through Paradox (South) Lease Tracts - Part 1
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface .. 2
How Soil Surveys Are Made .. 5
Soil Map ... 7
- Soil Map (Cross Section through Paradox (South) Lease Tracts) .. 8
- Legend .. 9
- Map Unit Legend (Cross Section through Paradox (South) Lease Tracts) 10
- Map Unit Descriptions (Cross Section through Paradox (South) Lease Tracts) 10
- San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties 12
 15—Barx fine sandy loam, 3 to 6 percent slopes .. 12
 23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes ... 13
 45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes ... 14
 56—Mikim loam, 1 to 6 percent slopes ... 16
 60—Monogram loam, 1 to 8 percent slopes .. 17
 73—Paradox fine sandy loam, 1 to 4 percent slopes ... 18
 75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes .. 20
 87—Rock outcrop .. 22
 88—Rock outcrop-Orthents complex, 40 to 90 percent slopes ... 23
 112—Water .. 24
Soil Information for All Uses .. 25
- Suitabilities and Limitations for Use .. 25
- Land Classifications .. 25
 - Farmland Classification (Cross Section through Paradox (South) Lease Tracts) 25
 - Hydric Rating by Map Unit (Cross Section through Paradox (South) Lease Tracts) 25
 - Nonirrigated Capability Class (Cross Section through Paradox (South) Lease Tracts) 25
 - Soil Taxonomy Classification (Cross Section through Paradox (South) Lease Tracts) 25
- Land Management .. 40
 - Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (South) Lease Tracts) 40
 - Erosion Hazard (Road, Trail) (Cross Section through Paradox (South) Lease Tracts) 41
 - Fugitive Dust Resistance (Cross Section through Paradox (South) Lease Tracts) 45
 - Soil Rutting Hazard (Cross Section through Paradox (South) Lease Tracts) 49
 - Suitability for Roads (Natural Surface) (Cross Section through Paradox (South) Lease Tracts) 54
- References .. 63
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Special Point Features

Soil Map Units

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

Other

Special Line Features

Gully

Short Steep Slope

Other

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions (Cross Section through Paradox (South) Lease Tracts)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

15—Barx fine sandy loam, 3 to 6 percent slopes

Map Unit Setting
 Elevation: 5,000 to 7,200 feet
 Mean annual precipitation: 12 to 14 inches
 Mean annual air temperature: 46 to 48 degrees F
 Frost-free period: 110 to 130 days

Map Unit Composition
 Barx and similar soils: 85 percent
 Minor components: 15 percent

Description of Barx

Setting
 Landform: Mesas, terraces
 Landform position (three-dimensional): Tread
 Down-slope shape: Linear
 Across-slope shape: Linear
 Parent material: Alluvium derived from sandstone

Properties and qualities
 Slope: 3 to 6 percent
 Depth to restrictive feature: More than 80 inches
 Drainage class: Well drained
 Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
 Depth to water table: More than 80 inches
 Frequency of flooding: None
 Frequency of ponding: None
 Calcium carbonate, maximum content: 45 percent
 Maximum salinity: Nonsaline to very slightly saline (2.0 to 4.0 mmhos/cm)
 Sodium adsorption ratio, maximum: 10.0
 Available water capacity: High (about 9.5 inches)

Interpretive groups
 Land capability classification (irrigated): 3e
 Land capability (nonirrigated): 4c
 Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile
 0 to 2 inches: Fine sandy loam
 2 to 23 inches: Sandy clay loam
 23 to 74 inches: Loam

Minor Components

Abra
 Percent of map unit: 7 percent

Progresso
 Percent of map unit: 5 percent
Nyswonger
Percent of map unit: 3 percent
Landform: Drainageways

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Bodot, dry, and similar soils: 45 percent
Ustic torriorthents and similar soils: 40 percent
Minor components: 15 percent

Description of Bodot, Dry
Setting
Landform: Terraces, structural benches, landslides
Landform position (three-dimensional): Tread, riser
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from shale

Properties and qualities
Slope: 5 to 50 percent
Surface area covered with cobbles, stones or boulders: 5.0 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 4.0 inches)

Interpretive groups
Land capability (nonirrigated): 7e
Ecological site: Basin Shale (R035XY408CO)

Typical profile
0 to 3 inches: Cobbly clay loam
3 to 30 inches: Cobbly silty clay
30 to 34 inches: Weathered bedrock
Description of Ustic Torriorthents

Setting

Landform: Structural benches, landslides, terraces
Landform position (three-dimensional): Riser, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities

Slope: 5 to 50 percent
Depth to restrictive feature: 10 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 3.7 inches)

Interpretive groups

Land capability (nonirrigated): 7e

Typical profile

0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components

Rock outcrop

Percent of map unit: 10 percent

Pinon

Percent of map unit: 3 percent

Bowdish

Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting

Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days
Map Unit Composition

Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent

Description of Gladel

Setting
Landform: Structural benches, mesas, escarpments
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 5 to 15 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 1.1 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 8 inches: Sandy loam
8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 6 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water capacity: Very low (about 2.6 inches)
Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 3 inches: Fine sandy loam
3 to 16 inches: Clay loam
16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Setting

Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities

Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Paradox

Percent of map unit: 5 percent
Landform: Alluvial fans

56—Mikim loam, 1 to 6 percent slopes

Map Unit Setting

Elevation: 5,100 to 6,600 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 90 to 120 days

Map Unit Composition

Mikim and similar soils: 90 percent
Minor components: 10 percent
Description of Mikim

Setting

Landform: Valley floors
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from shale

Properties and qualities

Slope: 1 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability (nonirrigated): 4c
Ecological site: Semidesert Loam (R035XY325CO)

Typical profile

0 to 6 inches: Loam
6 to 45 inches: Loam
45 to 60 inches: Gravelly sandy loam

Minor Components

Vanada

Percent of map unit: 5 percent

Paradox

Percent of map unit: 5 percent

60—Monogram loam, 1 to 8 percent slopes

Map Unit Setting

Elevation: 6,800 to 7,300 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 45 to 47 degrees F
Frost-free period: 90 to 120 days

Map Unit Composition

Monogram and similar soils: 85 percent
Minor components: 15 percent
Description of Monogram

Setting

Landform: Mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: High (about 10.1 inches)

Interpretive groups

Land capability (nonirrigated): 4e
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile

0 to 3 inches: Loam
3 to 14 inches: Loam
14 to 28 inches: Loam
28 to 60 inches: Sandy clay loam

Minor Components

Evanston
Percent of map unit: 5 percent

Progresso
Percent of map unit: 5 percent

Ackmen
Percent of map unit: 5 percent

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting

Elevation: 4,900 to 6,500 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 47 to 49 degrees F
Frost-free period: 120 to 140 days
Map Unit Composition

Paradox and similar soils: 85 percent
Minor components: 15 percent

Description of Paradox

Setting

Landform: Valley floors, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities

Slope: 1 to 4 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e
Land capability (nonirrigated): 6e
Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile

0 to 5 inches: Fine sandy loam
5 to 19 inches: Fine sandy loam
19 to 60 inches: Loam

Minor Components

Ustic torriorthents

Percent of map unit: 10 percent
Landform: Drainageways

Gypsiorthids

Percent of map unit: 3 percent
Landform: Knobs

Begay

Percent of map unit: 2 percent
Landform: Knobs
75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes

Map Unit Setting
- Elevation: 6,800 to 7,400 feet
- Mean annual precipitation: 13 to 15 inches
- Mean annual air temperature: 45 to 47 degrees F
- Frost-free period: 90 to 120 days

Map Unit Composition
- Pinon, cool, and similar soils: 35 percent
- Bowdish, cool, and similar soils: 30 percent
- Progresso, cool, and similar soils: 20 percent
- Minor components: 15 percent

Description of Pinon, Cool

Setting
- Landform: Mesas, ridges
- Down-slope shape: Linear
- Across-slope shape: Linear

Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
- Slope: 1 to 12 percent
- Depth to restrictive feature: 10 to 20 inches to lithic bedrock
- Drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 40 percent
- Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
- Available water capacity: Very low (about 2.0 inches)

Interpretive groups
- Land capability (nonirrigated): 7s

Typical profile
- 0 to 5 inches: Loam
- 5 to 16 inches: Gravelly loam
- 16 to 20 inches: Unweathered bedrock

Description of Bowdish, Cool

Setting
- Landform: Mesas, ridges
- Down-slope shape: Linear
- Across-slope shape: Linear

Parent material: Residuum weathered from interbedded sandstone and shale
Properties and qualities
Slope: 1 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Non saline to very slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 3.0 inches)

Interpretive groups
Land capability (nonirrigated): 4e

Typical profile
0 to 5 inches: Loam
5 to 12 inches: Loam
12 to 23 inches: Gravelly loam
23 to 27 inches: Weathered bedrock

Description of Progresso, Cool
Setting
Landform: Mesas, ridges
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 1 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Non saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.3 inches)

Interpretive groups
Land capability (nonirrigated): 6c
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile
0 to 7 inches: Loam
7 to 14 inches: Clay loam
14 to 24 inches: Clay loam
24 to 36 inches: Sandy loam
36 to 40 inches: Unweathered bedrock
Minor Components

Rock outcrop
Percent of map unit: 10 percent

Ustochreptic calciothids
Percent of map unit: 5 percent

87—Rock outcrop

Map Unit Setting
Elevation: 4,700 to 10,000 feet
Mean annual precipitation: 10 to 22 inches
Mean annual air temperature: 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition
Rock outcrop: 90 percent
Minor components: 10 percent

Description of Rock Outcrop

Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 40 to 120 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components

Orthents
Percent of map unit: 10 percent
Landform: Draws
88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting

- **Elevation:** 4,700 to 9,200 feet
- **Mean annual precipitation:** 10 to 19 inches
- **Mean annual air temperature:** 43 to 49 degrees F
- **Frost-free period:** 70 to 140 days

Map Unit Composition

- **Rock outcrop:** 50 percent
- **Orthents and similar soils:** 45 percent
- **Minor components:** 5 percent

Description of Rock Outcrop

Setting

- **Landform:** Canyons, mesas, structural benches
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from sandstone

Properties and qualities

- **Slope:** 40 to 90 percent
- **Depth to restrictive feature:** 0 to 4 inches to lithic bedrock
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

- **Land capability (nonirrigated):** 8s

Typical profile

- 0 to 60 inches: Unweathered bedrock

Description of Orthents

Setting

- **Landform:** Structural benches, canyons, mesas
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Colluvium and residuum from sandstone and shale

Properties and qualities

- **Slope:** 40 to 90 percent
- **Depth to restrictive feature:** 10 to 80 inches to paralithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to high (0.20 to 1.98 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.2 inches)

Interpretive groups
 Land capability (nonirrigated): 8e

Typical profile
 0 to 1 inches: Stony loam
 1 to 14 inches: Gravelly loam
 14 to 24 inches: Very cobbly loam
 24 to 60 inches: Very cobbly loam

Minor Components
 Pinon
 Percent of map unit: 5 percent

112—Water

Map Unit Composition
 Water: 95 percent
 Minor components: 5 percent

Minor Components
 Aquolls
 Percent of map unit: 5 percent
 Landform: Marshes
Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Farmland Classification (Cross Section through Paradox (South) Lease Tracts)

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.
Custom Soil Resource Report

MAP LEGEND

- Prime farmland if subsoiled, completely removing the root inhibiting soil layer
- Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 80
- Prime farmland if irrigated and reclaimed of excess salts and sodium
- Farmland of statewide importance
- Farmland of local importance
- Farmland of unique importance
- Not rated or not available

Soil Ratings
- Not prime farmland
- All areas are prime farmland
- Prime farmland if drained
- Prime farmland if protected from flooding or not frequently flooded during the growing season
- Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
- Prime farmland if irrigated and drained

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Farmland Classification (Cross Section through Paradox (South) Lease Tracts)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
15	Barx fine sandy loam, 3 to 6 percent slopes	Prime farmland if irrigated	8.8	0.5%	
23	Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes	Not prime farmland	656.6	40.8%	
45	Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes	Not prime farmland	41.4	2.6%	
56	Mikim loam, 1 to 6 percent slopes	Prime farmland if irrigated	9.3	0.6%	
60	Monogram loam, 1 to 8 percent slopes	Prime farmland if irrigated	162.4	10.1%	
73	Paradox fine sandy loam, 1 to 4 percent slopes	Prime farmland if irrigated	15.0	0.9%	
75	Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes	Not prime farmland	356.1	22.1%	
87	Rock outcrop	Not prime farmland	289.1	18.0%	
88	Rock outcrop-Orthents complex, 40 to 90 percent slopes	Not prime farmland	68.3	4.2%	
112	Water	Not prime farmland	1.1	0.1%	
Totals for Area of Interest			**1,608.2**	**100.0%**	

Rating Options—Farmland Classification (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: No Aggregation Necessary

Tie-break Rule: Lower

Hydric Rating by Map Unit (Cross Section through Paradox (South) Lease Tracts)

This rating indicates the proportion of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is designated as "all hydric," "partially hydric," "not hydric," or "unknown hydric," depending on the rating of its respective components.

"All hydric" means that all components listed for a given map unit are rated as being hydric, while "not hydric" means that all components are rated as not hydric. "Partially hydric" means that at least one component of the map unit is rated as hydric, and at
least one component is rated as not hydric. "Unknown hydric" indicates that at least one component is not rated so a definitive rating for the map unit cannot be made.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Custom Soil Resource Report
Map—Hydric Rating by Map Unit (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

All Hydric
Partially Hydric
Not Hydric
Unknown Hydric
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads
Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Hydric Rating by Map Unit (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Not Hydric</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not Hydric</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Not Hydric</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>Not Hydric</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>Not Hydric</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Not Hydric</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>Not Hydric</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>Not Hydric</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>Not Hydric</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>Partially Hydric</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Rating Options—Hydric Rating by Map Unit (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Absence/Presence

Tie-break Rule: Lower

Nonirrigated Capability Class (Cross Section through Paradox (South) Lease Tracts)

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations that show suitability and limitations of groups of soils for rangeland, for woodland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit. Only class and subclass are included in this data set.
Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have few limitations that restrict their use.

Class 2 soils have moderate limitations that reduce the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that reduce the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that reduce the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.
Custom Soil Resource Report
Map—Nonirrigated Capability Class (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
- **Soil Ratings**
 - Capability Class - I
 - Capability Class - II
 - Capability Class - III
 - Capability Class - IV
 - Capability Class - V
 - Capability Class - VI
 - Capability Class - VII
 - Capability Class - VIII
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Nonirrigated Capability Class (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>4</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>7</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>7</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>4</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>4</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>6</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>7</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>8</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>8</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>1.1</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Nonirrigated Capability Class (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Soil Taxonomy Classification (Cross Section through Paradox (South) Lease Tracts)

This rating presents the taxonomic classification based on Soil Taxonomy.

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2003). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. This table shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.
ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisols.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Udalfs (Ud, meaning humid, plus alfs, from Alfisols).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Hapludalfs (Hapl, meaning minimal horizonation, plus udalfs, the suborder of the Alfisols that has a udic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Hapludalfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, active, mesic Typic Hapludalfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

References:

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. (The soils in a given survey area may have been classified according to earlier editions of this publication.)
Custom Soil Resource Report
Map—Soil Taxonomy Classification (Cross Section through Paradox (South) Lease Tracts)

Map Scale: 1:24,000 if printed on A size (8.5" x 11") sheet.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - Fine, montmorillonitic (calcareous), mesic Ustic Torriorthents
 - Fine-loamy, mixed (calcareous), mesic Ustic Torriorthents
 - Fine-loamy, mixed, mesic Ustic Haplargids
 - Fine-silty, mixed, mesic Ustic Haplargids
 - Loamy, mixed (calcareous), mesic Lithic Ustic Torriorthents
 - Loamy, mixed, mesic Lithic Ustollic Calciorthids
 - Not rated or not available

- **Political Features**
 - Cities

- **Water Features**
 - Streams and Canals

- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Soil Taxonomy Classification (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Fine-loamy, mixed, mesic Ustollic Haplargids</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Fine, montmorillonitic (calcareous), mesic Ustic Torriorthents</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Loamy, mixed (calcareous), mesic Lithic Ustic Torriorthents</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>Fine-loamy, mixed (calcareous), mesic Ustic Torriorthents</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>Fine-silty, mixed Ustollic Haplargids</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Fine-loamy, mixed (calcareous), mesic Ustic Torriorthents</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>Loamy, mixed, mesic Lithic Ustollic Calcorthids</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Soil Taxonomy Classification (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower

Land Management

Land management interpretations are tools designed to guide the user in evaluating existing conditions in planning and predicting the soil response to various land management practices, for a variety of land uses, including cropland, forestland, hayland, pastureland, horticulture, and rangeland. Example interpretations include suitability for a variety of irrigation practices, log landings, haul roads and major skid trails, equipment operability, site preparation, suitability for hand and mechanical planting, potential erosion hazard associated with various practices, and ratings for fencing and waterline installation.
Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (South) Lease Tracts)

The ratings in this interpretation indicate the hazard of soil loss from off-road and off-trail areas after disturbance activities that expose the soil surface. The ratings are based on slope and soil erosion factor K. The soil loss is caused by sheet or rill erosion in off-road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," "severe," or "very severe." A rating of "slight" indicates that erosion is unlikely under ordinary climatic conditions; "moderate" indicates that some erosion is likely and that erosion-control measures may be needed; "severe" indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and "very severe" indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (South) Lease Tracts)

Map Scale: 1:24,000 if printed on A size (8.5" x 11") sheet.
MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Erosion Hazard (Off-Road, Off-Trail)—Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Slight</td>
<td>Barx (85%)</td>
<td></td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.50)</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Erosion Hazard (Off-Road, Off-Trail)—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>Slight</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>942.7</td>
<td>58.6%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Erosion Hazard (Road, Trail) (Cross Section through Paradox (South) Lease Tracts)

The ratings in this interpretation indicate the hazard of soil loss from unsurfaced roads and trails. The ratings are based on soil erosion factor K, slope, and content of rock fragments.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," or "severe." A rating of "slight" indicates that little or no erosion is likely; "moderate" indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and "severe" indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

Map—Erosion Hazard (Road, Trail) (Cross Section through Paradox (South) Lease Tracts)

Map Scale: 1:24,000 if printed on A size (8.5" x 11") sheet.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - Very severe
 - Severe
 - Moderate
 - Slight
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Erosion Hazard (Road, Trail) (Cross Section through Paradox (South) Lease Tracts)

Erosion Hazard (Road, Trail)—Summary by Map Unit—San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Moderate</td>
<td>Barx (85%)</td>
<td>Slope/erodibility (0.50)</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Severe</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.95)</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Erosion Hazard (Road, Trail)—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>Moderate</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>942.7</td>
<td>58.6%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Erosion Hazard (Road, Trail) (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Fugitive Dust Resistance (Cross Section through Paradox (South) Lease Tracts)

This interpretation rates the vulnerability of a soil for eroded soil particles to go into suspension during a windstorm. Fugitive dust can create extreme visibility reductions during severe windstorms creating traffic hazards and closing airports. Power outages, expensive cleanup costs, damage to computers and communications equipment from dust, transport of potentially harmful chemicals adhering to the soil particles, and loss of soil nutrients are some of the potential effects of fugitive dust. A positive impact is that nutrient enrichment can occur where fugitive dust is deposited.

Fugitive dust is a source of PM10 which is one of the seven air pollutants the Environmental Protection Agency regulates under the National Ambient Air Quality Standards (NAAQS). To a lesser extent, fugitive dust is a source of PM2.5 which has proposed regulations pending under NAAQS. PM10 and PM2.5 are defined as particulate matter with a mean diameter less than 10 microns and 2.5 microns respectively. These soil particles are very small, can remain suspended in the air for long periods of time, and are easily inhaled into the deep lungs. Increased risks of death and disease have been linked to periods of high outdoor PM10 and PM2.5 concentrations. These fine particles can potentially be lifted thousands of feet into the atmosphere and transported across continents and oceans creating global health, ecological, and climate change impacts.

The soil properties and qualities that affect fugitive dust are size of surface soil particles, rock fragment content, organic matter content, calcium carbonate equivalent, aggregate stability and presence of a stable soil crust. Clay particles have a strong propensity to form relatively large, durable soil aggregates and not contribute appreciably to fugitive dust unless these aggregates are broken down by intensive surface disturbance. Soil moisture and the presence of frozen soil also influence fugitive dust. Activities which break down soil aggregates and crusts increase wind erosion and production of fugitive dust.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which all of the soil features affect the formation of dust. "Low resistance" indicates that the soil has features that are very favorable for the formation of dust. "Moderate resistance" indicates that the soil has features that are favorable for dust formation. "High resistance" indicates that the soil has features that are unfavorable for dust formation.

Numerical ratings indicate the level of vulnerability of the soil for dust formation. The ratings are shown in decimal fractions ranging from 1.00 to 0.01. They indicate gradations between the point at which a soil feature resists dust formation (1.00) and the point at which the soil feature is favorable to the formation of dust (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each
component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Fugitive Dust Resistance (Cross Section through Paradox (South) Lease Tracts)

Fugitive Dust Resistance— Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Moderate resistance to dust propagation</td>
<td>Barx (85%)</td>
<td>Component interpretable (0.00)</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No reduction of fugitive dust by rock fragments (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface texture dust propagation (0.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonate-related aggravation of fugitive dust (0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not rated</td>
<td>Ustic Torriorthents (40%)</td>
<td>Rock outcrop (10%)</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Fugitive Dust Resistance— Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate resistance to dust propagation</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>1,599.3</td>
<td>99.4%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

53
Rating Options—Fugitive Dust Resistance (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower

Soil Rutting Hazard (Cross Section through Paradox (South) Lease Tracts)

The ratings in this interpretation indicate the hazard of surface rut formation through the operation of forestland equipment. Soil displacement and puddling (soil deformation and compaction) may occur simultaneously with rutting.

Ratings are based on depth to a water table, rock fragments on or below the surface, the Unified classification of the soil, depth to a restrictive layer, and slope. The hazard is described as slight, moderate, or severe. A rating of "slight" indicates that the soil is subject to little or no rutting. "Moderate" indicates that rutting is likely. "Severe" indicates that ruts form readily.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Soil Rutting Hazard (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- Severe
- Moderate
- Slight
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Soil Rutting Hazard—Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Severe</td>
<td>Barx (85%)</td>
<td>Low strength (1.00)</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Low strength (0.50)</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Soil Rutting Hazard—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>Severe</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>942.7</td>
<td>58.6%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Soil Rutting Hazard (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Suitability for Roads (Natural Surface) (Cross Section through Paradox (South) Lease Tracts)

The ratings in this interpretation indicate the suitability for using the natural surface of the soil for roads. The ratings are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification of the soil, depth to a water table, ponding, flooding, and the hazard of soil slippage.

The ratings are both verbal and numerical. The soils are described as "well suited," "moderately suited," or "poorly suited" to this use. "Well suited" indicates that the soil has features that are favorable for the specified kind of roads and has no limitations. Good performance can be expected, and little or no maintenance is needed. "Moderately suited" indicates that the soil has features that are moderately favorable for the specified kind of roads. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. "Poorly suited" indicates that the soil has one or more properties that are unfavorable for the specified kind of roads. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

- Poorly suited
- Moderately suited
- Well suited
- Not rated or not available

Political Features

Water Features

Transportation

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Suitability for Roads (Natural Surface) (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Moderately suited</td>
<td>Barx (85%)</td>
<td>Low strength (0.50)</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Poorly suited</td>
<td>Bodot, dry (45%)</td>
<td>Slope (1.00)</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock fragments (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Suitability for Roads (Natural Surface)—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorly suited</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>Moderately suited</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>942.7</td>
<td>58.6%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>1,608.2</td>
</tr>
</tbody>
</table>
Rating Options—Suitability for Roads (Natural Surface) (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher
References

Custom Soil Resource Report for
San Miguel Area, Colorado,
Parts of Dolores, Montrose, and San Miguel Counties
Cross Section through Paradox (South) Lease Tracts - Part 2

January 9, 2012
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>How Soil Surveys Are Made</td>
<td>6</td>
</tr>
<tr>
<td>Soil Map</td>
<td>8</td>
</tr>
<tr>
<td>Soil Map (Cross Section through Paradox (South) Lease Tracts)</td>
<td>9</td>
</tr>
<tr>
<td>Legend</td>
<td>10</td>
</tr>
<tr>
<td>Map Unit Legend (Cross Section through Paradox (South) Lease Tracts)</td>
<td>11</td>
</tr>
<tr>
<td>Map Unit Descriptions (Cross Section through Paradox (South) Lease Tracts)</td>
<td>11</td>
</tr>
<tr>
<td>San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties</td>
<td></td>
</tr>
<tr>
<td>15—Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>13</td>
</tr>
<tr>
<td>23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>14</td>
</tr>
<tr>
<td>45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>15</td>
</tr>
<tr>
<td>56—Mikim loam, 1 to 6 percent slopes</td>
<td>17</td>
</tr>
<tr>
<td>60—Monogram loam, 1 to 8 percent slopes</td>
<td>18</td>
</tr>
<tr>
<td>73—Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>19</td>
</tr>
<tr>
<td>75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>21</td>
</tr>
<tr>
<td>87—Rock outcrop</td>
<td>23</td>
</tr>
<tr>
<td>88—Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>24</td>
</tr>
<tr>
<td>112—Water</td>
<td>25</td>
</tr>
<tr>
<td>Soil Information for All Uses</td>
<td>26</td>
</tr>
<tr>
<td>Soil Properties and Qualities</td>
<td>26</td>
</tr>
<tr>
<td>Soil Erosion Factors</td>
<td>26</td>
</tr>
<tr>
<td>K Factor, Whole Soil (Cross Section through Paradox (South) Lease Tracts)</td>
<td>26</td>
</tr>
<tr>
<td>Wind Erodibility Group (Cross Section through Paradox (South) Lease Tracts)</td>
<td>29</td>
</tr>
<tr>
<td>Soil Physical Properties</td>
<td>32</td>
</tr>
<tr>
<td>Available Water Capacity (Cross Section through Paradox (South) Lease Tracts)</td>
<td>32</td>
</tr>
<tr>
<td>Organic Matter (Cross Section through Paradox (South) Lease Tracts)</td>
<td>37</td>
</tr>
<tr>
<td>Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (South) Lease Tracts)</td>
<td>40</td>
</tr>
<tr>
<td>Surface Texture (Cross Section through Paradox (South) Lease Tracts)</td>
<td>44</td>
</tr>
<tr>
<td>Soil Qualities and Features</td>
<td>48</td>
</tr>
<tr>
<td>Drainage Class (Cross Section through Paradox (South) Lease Tracts)</td>
<td>49</td>
</tr>
<tr>
<td>Hydrologic Soil Group (Cross Section through Paradox (South) Lease Tracts)</td>
<td>52</td>
</tr>
<tr>
<td>Parent Material Name (Cross Section through Paradox (South) Lease Tracts)</td>
<td>56</td>
</tr>
<tr>
<td>Water Features</td>
<td>60</td>
</tr>
<tr>
<td>Depth to Water Table (Cross Section through Paradox (South) Lease Tracts)</td>
<td>60</td>
</tr>
</tbody>
</table>
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Special Point Features
- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh or swamp
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot
- Spoil Area
- Stony Spot

Very Stony Spot
- Wet Spot
- Other

Special Line Features
- Gully
- Short Steep Slope
- Other

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest 1,608.2 100.0%

Map Unit Descriptions (Cross Section through Paradox (South) Lease Tracts)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

15—Barx fine sandy loam, 3 to 6 percent slopes

Map Unit Setting
 - Elevation: 5,000 to 7,200 feet
 - Mean annual precipitation: 12 to 14 inches
 - Mean annual air temperature: 46 to 48 degrees F
 - Frost-free period: 110 to 130 days

Map Unit Composition
 - Barx and similar soils: 85 percent
 - Minor components: 15 percent

Description of Barx

Setting
 - Landform: Mesas, terraces
 - Landform position (three-dimensional): Tread
 - Down-slope shape: Linear
 - Across-slope shape: Linear
 - Parent material: Alluvium derived from sandstone

Properties and qualities
 - Slope: 3 to 6 percent
 - Depth to restrictive feature: More than 80 inches
 - Drainage class: Well drained
 - Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
 - Depth to water table: More than 80 inches
 - Frequency of flooding: None
 - Frequency of ponding: None
 - Calcium carbonate, maximum content: 45 percent
 - Maximum salinity: Nonsaline to very slightly saline (2.0 to 4.0 mmhos/cm)
 - Sodium adsorption ratio, maximum: 10.0
 - Available water capacity: High (about 9.5 inches)

Interpretive groups
 - Land capability classification (irrigated): 3e
 - Land capability (nonirrigated): 4c
 - Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile
 - 0 to 2 inches: Fine sandy loam
 - 2 to 23 inches: Sandy clay loam
 - 23 to 74 inches: Loam

Minor Components

Abra
 - Percent of map unit: 7 percent

Progresso
 - Percent of map unit: 5 percent
Nyswonger
Percent of map unit: 3 percent
Landform: Drainageways

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Bodot, dry, and similar soils: 45 percent
Ustic torriorthents and similar soils: 40 percent
Minor components: 15 percent

Description of Bodot, Dry
Setting
Landform: Terraces, structural benches, landslides
Landform position (three-dimensional): Tread, riser
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from shale

Properties and qualities
Slope: 5 to 50 percent
Surface area covered with cobbles, stones or boulders: 5.0 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 4.0 inches)

Interpretive groups
Land capability (nonirrigated): 7e
Ecological site: Basin Shale (R035XY408CO)

Typical profile
0 to 3 inches: Cobbly clay loam
3 to 30 inches: Cobbly silty clay
30 to 34 inches: Weathered bedrock
Description of Ustic Torriorthents

Setting

Landform: Structural benches, landslides, terraces
Landform position (three-dimensional): Riser, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities

Slope: 5 to 50 percent
Depth to restrictive feature: 10 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 3.7 inches)

Interpretive groups

Land capability (nonirrigated): 7e

Typical profile

0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components

Rock outcrop

 Percent of map unit: 10 percent

Pinon

 Percent of map unit: 3 percent

Bowdish

 Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting

Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days
Map Unit Composition

Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent

Description of Gladel

Setting
Landform: Structural benches, mesas, escarpments
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 5 to 15 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 1.1 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 8 inches: Sandy loam
8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 6 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water capacity: Very low (about 2.6 inches)
Interpretive groups
Land capability (nonirrigated): 7s

Typical profile
0 to 3 inches: Fine sandy loam
3 to 16 inches: Clay loam
16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop
Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components
Paradox
Percent of map unit: 5 percent
Landform: Alluvial fans

56—Mikim loam, 1 to 6 percent slopes

Map Unit Setting
Elevation: 5,100 to 6,600 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 90 to 120 days

Map Unit Composition
Mikim and similar soils: 90 percent
Minor components: 10 percent
Description of Mikim

Setting
- **Landform:** Valley floors
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Alluvium derived from shale

Properties and qualities
- **Slope:** 1 to 6 percent
- **Depth to restrictive feature:** More than 80 inches
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to high (0.60 to 2.00 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** Rare
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 10 percent
- **Maximum salinity:** Non saline (0.0 to 2.0 mmhos/cm)
- **Sodium adsorption ratio, maximum:** 10.0
- **Available water capacity:** Moderate (about 8.3 inches)

Interpretive groups
- **Land capability classification (irrigated):** 3e
- **Land capability (nonirrigated):** 4c
- **Ecological site:** Semidesert Loam (R035XY325CO)

Typical profile
- **0 to 6 inches:** Loam
- **6 to 45 inches:** Loam
- **45 to 60 inches:** Gravelly sandy loam

Minor Components

- **Vanada**
 - **Percent of map unit:** 5 percent

- **Paradox**
 - **Percent of map unit:** 5 percent

60—Monogram loam, 1 to 8 percent slopes

Map Unit Setting
- **Elevation:** 6,800 to 7,300 feet
- **Mean annual precipitation:** 13 to 15 inches
- **Mean annual air temperature:** 45 to 47 degrees F
- **Frost-free period:** 90 to 120 days

Map Unit Composition
- **Monogram and similar soils:** 85 percent
- **Minor components:** 15 percent
Description of Monogram

Setting

Landform: Mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: High (about 10.1 inches)

Interpretive groups

Land capability (nonirrigated): 4e
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile

0 to 3 inches: Loam
3 to 14 inches: Loam
14 to 28 inches: Loam
28 to 60 inches: Sandy clay loam

Minor Components

Evanston

Percent of map unit: 5 percent

Progresso

Percent of map unit: 5 percent

Ackmen

Percent of map unit: 5 percent

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting

Elevation: 4,900 to 6,500 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 47 to 49 degrees F
Frost-free period: 120 to 140 days
Map Unit Composition

Paradox and similar soils: 85 percent
Minor components: 15 percent

Description of Paradox

Setting
Landform: Valley floors, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 1 to 4 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 9.2 inches)

Interpretive groups
Land capability classification (irrigated): 2e
Land capability (nonirrigated): 6e
Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile
0 to 5 inches: Fine sandy loam
5 to 19 inches: Fine sandy loam
19 to 60 inches: Loam

Minor Components

Ustic torriorthents
Percent of map unit: 10 percent
Landform: Drainageways

Gypsiorthids
Percent of map unit: 3 percent
Landform: Knobs

Begay
Percent of map unit: 2 percent
Landform: Knobs
75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes

Map Unit Setting

- **Elevation:** 6,800 to 7,400 feet
- **Mean annual precipitation:** 13 to 15 inches
- **Mean annual air temperature:** 45 to 47 degrees F
- **Frost-free period:** 90 to 120 days

Map Unit Composition

- **Pinon, cool, and similar soils:** 35 percent
- **Bowdish, cool, and similar soils:** 30 percent
- **Progresso, cool, and similar soils:** 20 percent
- **Minor components:** 15 percent

Description of Pinon, Cool

Setting

- **Landform:** Mesas, ridges
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from interbedded sandstone and shale

Properties and qualities

- **Slope:** 1 to 12 percent
- **Depth to restrictive feature:** 10 to 20 inches to lithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately low to moderately high (0.06 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 40 percent
- **Maximum salinity:** Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity:** Very low (about 2.0 inches)

Interpretive groups

- **Land capability (nonirrigated):** 7s

Typical profile

- **0 to 5 inches:** Loam
- **5 to 16 inches:** Gravelly loam
- **16 to 20 inches:** Unweathered bedrock

Description of Bowdish, Cool

Setting

- **Landform:** Mesas, ridges
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from interbedded sandstone and shale
Properties and qualities

Slope: 1 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 3.0 inches)

Interpretive groups

Land capability (nonirrigated): 4e

Typical profile

0 to 5 inches: Loam
5 to 12 inches: Loam
12 to 23 inches: Gravelly loam
23 to 27 inches: Weathered bedrock

Description of Progresso, Cool

Setting

Landform: Mesas, ridges
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities

Slope: 1 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability (nonirrigated): 6c
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile

0 to 7 inches: Loam
7 to 14 inches: Clay loam
14 to 24 inches: Clay loam
24 to 36 inches: Sandy loam
36 to 40 inches: Unweathered bedrock
Minor Components

Rock outcrop
Percent of map unit: 10 percent

Ustochreptic calcicorthids
Percent of map unit: 5 percent

87—Rock outcrop

Map Unit Setting
Elevation: 4,700 to 10,000 feet
Mean annual precipitation: 10 to 22 inches
Mean annual air temperature: 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition
Rock outcrop: 90 percent
Minor components: 10 percent

Description of Rock Outcrop

Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 40 to 120 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksα): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components

Orthents
Percent of map unit: 10 percent
Landform: Draws
88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting
Elevation: 4,700 to 9,200 feet
Mean annual precipitation: 10 to 19 inches
Mean annual air temperature: 43 to 49 degrees F
Frost-free period: 70 to 140 days

Map Unit Composition
Rock outcrop: 50 percent
Orthents and similar soils: 45 percent
Minor components: 5 percent

Description of Rock Outcrop
Setting
Landform: Canyons, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 40 to 90 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock

Description of Orthents
Setting
Landform: Structural benches, canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Colluvium and residuum from sandstone and shale

Properties and qualities
Slope: 40 to 90 percent
Depth to restrictive feature: 10 to 80 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.2 inches)

Interpretive groups
Land capability (nonirrigated): 8e

Typical profile
0 to 1 inches: Stony loam
1 to 14 inches: Gravelly loam
14 to 24 inches: Very cobbly loam
24 to 60 inches: Very cobbly loam

Minor Components
Pinon
Percent of map unit: 5 percent

112—Water

Map Unit Composition
Water: 95 percent
Minor components: 5 percent

Minor Components
Aquolls
Percent of map unit: 5 percent
Landform: Marshes
Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Erosion Factors

Soil Erosion Factors are soil properties and interpretations used in evaluating the soil for potential erosion. Example soil erosion factors can include K factor for the whole soil or on a rock free basis, T factor, wind erodibility group and wind erodibility index.

K Factor, Whole Soil (Cross Section through Paradox (South) Lease Tracts)

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.
Custom Soil Resource Report

MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Soils</th>
<th>Soil Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil Map Units</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Roads</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.64</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—K Factor, Whole Soil (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>.20</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>.10</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>.20</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>.32</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>.43</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>.20</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>.32</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>289.1</td>
<td></td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>68.3</td>
<td></td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>1.1</td>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—K Factor, Whole Soil (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Layer Options: Surface Layer

Wind Erodibility Group (Cross Section through Paradox (South) Lease Tracts)

A wind erodibility group (WEG) consists of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

1

2

3

4

4L

5

6

7

8

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Wind Erodibility Group (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>3</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>5</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>3</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>5</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>6</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>3</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>4L</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>8</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>68.3</td>
<td>4.2%</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Wind Erodibility Group (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Soil Physical Properties

Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Available Water Capacity (Cross Section through Paradox (South) Lease Tracts)

Available water capacity (AWC) refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in centimeters of water per centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content
of organic matter, soil texture, bulk density, and soil structure, with corrections for salinity and rock fragments. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. It is not an estimate of the quantity of water actually available to plants at any given time.

Available water supply (AWS) is computed as AWC times the thickness of the soil. For example, if AWC is 0.15 cm/cm, the available water supply for 25 centimeters of soil would be 0.15 x 25, or 3.75 centimeters of water.

For each soil layer, AWC is recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Custom Soil Resource Report
Map—Available Water Capacity (Cross Section through Paradox (South) Lease Tracts)

Map Scale: 1:24,000 if printed on A size (8.5" x 11") sheet.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

<= 0.12

> 0.12 AND <= 0.14

> 0.14 AND <= 0.16

> 0.16 AND <= 0.18

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Available Water Capacity (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters per centimeter)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>0.16</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.14</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>0.14</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>0.16</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>0.18</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.14</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>0.12</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Available Water Capacity (Cross Section through Paradox (South) Lease Tracts)

Units of Measure: centimeters per centimeter
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches
Organic Matter (Cross Section through Paradox (South) Lease Tracts)

Organic matter is the plant and animal residue in the soil at various stages of decomposition. The estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms. An irregular distribution of organic carbon with depth may indicate different episodes of soil deposition or soil formation. Soils that are very high in organic matter have poor engineering properties and subside upon drying.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

<= 0.38

> 0.38 AND <= 0.47

> 0.47 AND <= 0.95

> 0.95 AND <= 1.38

> 1.38 AND <= 1.5

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Organic Matter (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (percent)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>0.46</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.38</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>1.50</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>1.38</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>0.95</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.47</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>1.29</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Organic Matter (Cross Section through Paradox (South) Lease Tracts)

Units of Measure: percent
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (South) Lease Tracts)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers.
per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A “representative” value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.
Custom Soil Resource Report
Map—Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td></td>
</tr>
<tr>
<td><= 1.4267</td>
<td></td>
</tr>
<tr>
<td>> 1.4267 AND <= 4.5133</td>
<td></td>
</tr>
<tr>
<td>> 4.5133 AND <= 11.5233</td>
<td></td>
</tr>
<tr>
<td>> 11.5233 AND <= 19.1267</td>
<td></td>
</tr>
<tr>
<td>> 19.1267 AND <= 28.23</td>
<td></td>
</tr>
<tr>
<td>Not rated or not available</td>
<td></td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (micrometers per second)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>11.5233</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>1.4267</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>19.1267</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>9.1700</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>4.5133</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>28.2300</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>9.1700</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>0.0140</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>0.0140</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Rating Options—Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (South) Lease Tracts)

- **Units of Measure:** micrometers per second
- **Aggregation Method:** Dominant Component
- **Component Percent Cutoff:** None Specified
- **Tie-break Rule:** Fastest
- **Interpret Nulls as Zero:** No
- **Layer Options:** Depth Range
- **Top Depth:** 0
- **Bottom Depth:** 12
- **Units of Measure:** Inches

Surface Texture (Cross Section through Paradox (South) Lease Tracts)

This displays the representative texture class and modifier of the surface horizon.
Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
- **Soil Ratings**
 - cobbly clay loam
 - fine sandy loam
 - loam
 - sandy loam
 - unweathered bedrock
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Surface Texture (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>fine sandy loam</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>cobbly clay loam</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>sandy loam</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>loam</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>loam</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>fine sandy loam</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>loam</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>unweathered bedrock</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>unweathered bedrock</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Surface Texture (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Layer Options: Surface Layer

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.
Drainage Class (Cross Section through Paradox (South) Lease Tracts)

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
 - Soil Ratings
 - Excessively drained
 - Somewhat excessively drained
 - Well drained
 - Moderately well drained
 - Somewhat poorly drained
 - Poorly drained
 - Very poorly drained
 - Subaqueous
 - Not rated or not available

- **Political Features**
- **Water Features**
 - Streams and Canals

- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

- **Soil Survey Area:** San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
- **Survey Area Data:** Version 7, May 3, 2011
- **Date(s) aerial images were photographed:** 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Drainage Class (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>Well drained</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Well drained</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Well drained</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikin loam, 1 to 6 percent slopes</td>
<td>Well drained</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>Well drained</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Well drained</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>Well drained</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Drainage Class (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Hydrologic Soil Group (Cross Section through Paradox (South) Lease Tracts)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.
Custom Soil Resource Report
Map—Hydrologic Soil Group (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

A

A/D

B

B/D

C

C/D

D

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Hydrologic Soil Group (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>B</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>C</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>D</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>B</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>B</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>B</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>C</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>D</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>D</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td></td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Hydrologic Soil Group (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Parent Material Name (Cross Section through Paradox (South) Lease Tracts)

Parent material name is a term for the general physical, chemical, and mineralogical composition of the unconsolidated material, mineral or organic, in which the soil forms. Mode of deposition and/or weathering may be implied by the name.

The soil surveyor uses parent material to develop a model used for soil mapping. Soil scientists and specialists in other disciplines use parent material to help interpret soil boundaries and project performance of the material below the soil. Many soil properties relate to parent material. Among these properties are proportions of sand, silt, and clay; chemical content; bulk density; structure; and the kinds and amounts of rock fragments. These properties affect interpretations and may be criteria used to
separate soil series. Soil properties and landscape information may imply the kind of parent material.

For each soil in the database, one or more parent materials may be identified. One is marked as the representative or most commonly occurring. The representative parent material name is presented here.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Local Roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td>alluvium derived from sandstone</td>
</tr>
<tr>
<td></td>
<td>alluvium derived from shale</td>
</tr>
<tr>
<td></td>
<td>eolian deposits</td>
</tr>
<tr>
<td></td>
<td>residuum weathered from interbedded sandstone and shale</td>
</tr>
<tr>
<td></td>
<td>residuum weathered from sandstone</td>
</tr>
<tr>
<td></td>
<td>residuum weathered from shale</td>
</tr>
<tr>
<td></td>
<td>Not rated or not available</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Parent Material Name (Cross Section through Paradox (South) Lease Tracts)

| Parent Material Name— Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675) |
|---|---|---|---|---|
| Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI |
| 15 | Barx fine sandy loam, 3 to 6 percent slopes | alluvium derived from sandstone | 8.8 | 0.5% |
| 23 | Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes | residuum weathered from shale | 656.6 | 40.8% |
| 45 | Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes | residuum weathered from sandstone | 41.4 | 2.6% |
| 56 | Mikim loam, 1 to 6 percent slopes | alluvium derived from shale | 9.3 | 0.6% |
| 60 | Monogram loam, 1 to 8 percent slopes | eolian deposits | 162.4 | 10.1% |
| 73 | Paradox fine sandy loam, 1 to 4 percent slopes | alluvium derived from sandstone | 15.0 | 0.9% |
| 75 | Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes | residuum weathered from interbedded sandstone and shale | 356.1 | 22.1% |
| 87 | Rock outcrop | residuum weathered from sandstone | 289.1 | 18.0% |
| 88 | Rock outcrop-Orthents complex, 40 to 90 percent slopes | residuum weathered from sandstone | 68.3 | 4.2% |
| 112 | Water | | 1.1 | 0.1% |
| **Totals for Area of Interest** | | | **1,608.2** | **100.0%** |

Rating Options—Parent Material Name (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Water Features

Water Features include ponding frequency, flooding frequency, and depth to water table.

Depth to Water Table (Cross Section through Paradox (South) Lease Tracts)

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at
selected sites and on evidence of a saturated zone, namely grayish colors
(redoximorphic features) in the soil. A saturated zone that lasts for less than a month
is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low
value and a high value indicate the range of this attribute for the soil component. A
"representative" value indicates the expected value of this attribute for the component.
For this soil property, only the representative value is used.
Custom Soil Resource Report
Map—Depth to Water Table (Cross Section through Paradox (South) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- [] Area of Interest (AOI)

Soils
- [] Soil Map Units

Soil Ratings
- [] 0 - 25
- [] 25 - 50
- [] 50 - 100
- [] 100 - 150
- [] 150 - 200
- [] > 200

Political Features
- [] Cities

Water Features
- [] Streams and Canals

Transportation
- [] Rails
- [] Interstate Highways
- [] US Routes
- [] Major Roads
- [] Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Depth to Water Table (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>>200</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>>200</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>>200</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>>200</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>>200</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>>200</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>>200</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>>200</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>>200</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>>200</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Rating Options—Depth to Water Table (Cross Section through Paradox (South) Lease Tracts)

Units of Measure: centimeters
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Lower
Interpret Nulls as Zero: No
Beginning Month: January
Ending Month: December

Flooding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent.

"None" means that flooding is not probable. The chance of flooding is nearly 0 percent in any year. Flooding occurs less than once in 500 years.

"Very rare" means that flooding is very unlikely but possible under extremely unusual weather conditions. The chance of flooding is less than 1 percent in any year.

"Rare" means that flooding is unlikely but possible under unusual weather conditions. The chance of flooding is 1 to 5 percent in any year.

"Occasional" means that flooding occurs infrequently under normal weather conditions. The chance of flooding is 5 to 50 percent in any year.

"Frequent" means that flooding is likely to occur often under normal weather conditions. The chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year.

"Very frequent" means that flooding is likely to occur very often under normal weather conditions. The chance of flooding is more than 50 percent in all months of any year.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

None
Very Rare
Rare
Occasional
Frequent
Very Frequent

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads
Local Roads

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Flooding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>None</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>Rare</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>None</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>None</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>None</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>****</td>
<td>****</td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Flooding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

- **Aggregation Method:** Dominant Condition
- **Component Percent Cutoff:** None Specified
- **Tie-break Rule:** More Frequent
- **Beginning Month:** January
- **Ending Month:** December

Ponding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

Ponding is standing water in a closed depression. The water is removed only by deep percolation, transpiration, or evaporation or by a combination of these processes. Ponding frequency classes are based on the number of times that ponding occurs over a given period. Frequency is expressed as none, rare, occasional, and frequent.

"None" means that ponding is not probable. The chance of ponding is nearly 0 percent in any year.
"Rare" means that ponding is unlikely but possible under unusual weather conditions. The chance of ponding is nearly 0 percent to 5 percent in any year.

"Occasional" means that ponding occurs, on the average, once or less in 2 years. The chance of ponding is 5 to 50 percent in any year.

"Frequent" means that ponding occurs, on the average, more than once in 2 years. The chance of ponding is more than 50 percent in any year.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td>Frequent</td>
</tr>
<tr>
<td>Political Features</td>
<td>Cities</td>
</tr>
<tr>
<td>Water Features</td>
<td>Streams and Canals</td>
</tr>
<tr>
<td>Transportation</td>
<td>Rails</td>
</tr>
<tr>
<td></td>
<td>Interstate Highways</td>
</tr>
<tr>
<td></td>
<td>US Routes</td>
</tr>
<tr>
<td></td>
<td>Major Roads</td>
</tr>
<tr>
<td></td>
<td>Local Roads</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:24,000 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Ponding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Barx fine sandy loam, 3 to 6 percent slopes</td>
<td>None</td>
<td>8.8</td>
<td>0.5%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>656.6</td>
<td>40.8%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>41.4</td>
<td>2.6%</td>
</tr>
<tr>
<td>56</td>
<td>Mikim loam, 1 to 6 percent slopes</td>
<td>None</td>
<td>9.3</td>
<td>0.6%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>None</td>
<td>162.4</td>
<td>10.1%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>15.0</td>
<td>0.9%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>None</td>
<td>356.1</td>
<td>22.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>289.1</td>
<td>18.0%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>68.3</td>
<td>4.2%</td>
</tr>
<tr>
<td>112</td>
<td>Water</td>
<td>None</td>
<td>1.1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>1,608.2</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Ponding Frequency Class (Cross Section through Paradox (South) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: More Frequent
Beginning Month: January
Ending Month: December
References

Custom Soil Resource Report for San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Cross Section through Paradox (North) Lease Tracts (Part 1)

January 9, 2012
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface .. 2
How Soil Surveys Are Made .. 5
Soil Map .. 7
 Soil Map (Cross Section through Paradox (North) Lease Tracts) .. 8
 Legend .. 9
 Map Unit Legend (Cross Section through Paradox (North) Lease Tracts) 10
 Map Unit Descriptions (Cross Section through Paradox (North) Lease Tracts) 10
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties 12
 17—Barx-Progresso complex, 3 to 12 percent slopes ... 12
 23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes 13
 45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes 15
 73—Paradox fine sandy loam, 1 to 4 percent slopes ... 17
 76—Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes 18
 87—Rock outcrop ... 20
 88—Rock outcrop-Orthents complex, 40 to 90 percent slopes 21
Soil Information for All Uses ... 23
 Suitabilities and Limitations for Use .. 23
 Land Classifications ... 23
 Farmland Classification (Cross Section through Paradox (North) Lease Tracts) 23
 Hydric Rating by Map Unit (Cross Section through Paradox (North) Lease Tracts) 26
 Nonirrigated Capability Class (Cross Section through Paradox (North) Lease Tracts) 30
 Soil Taxonomy Classification (Cross Section through Paradox (North) Lease Tracts) 34
 Land Management .. 38
 Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (North) Lease Tracts) 39
 Erosion Hazard (Road, Trail) (Cross Section through Paradox (North) Lease Tracts) 43
 Fugitive Dust Resistance (Cross Section through Paradox (North) Lease Tracts) 47
 Soil Rutting Hazard (Cross Section through Paradox (North) Lease Tracts) 52
 Suitability for Roads (Natural Surface) (Cross Section through Paradox (North) Lease Tracts) 56
References .. 61
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Special Point Features
- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh or swamp
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot
- Spoil Area
- Stony Spot

Very Stony Spot
Wet Spot
Other

Special Line Features
- Gully
- Short Steep Slope
- Other

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthoimage or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section through Paradox (North) Lease Tracts)

San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions (Cross Section through Paradox (North) Lease Tracts)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the
contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

17—Barx-Progresso complex, 3 to 12 percent slopes

Map Unit Setting

Elevation: 5,300 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition

Barx and similar soils: 45 percent
Progresso and similar soils: 40 percent
Minor components: 15 percent

Description of Barx

Setting

Landform: Mesas, terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 45 percent
Maximum salinity: Nonsaline to very slightly saline (2.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: High (about 9.5 inches)

Interpretive groups

Land capability (nonirrigated): 6e
Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile

0 to 2 inches: Fine sandy loam
2 to 23 inches: Sandy clay loam
23 to 74 inches: Loam

Description of Progresso

Setting

Landform: Mesas, terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.3 inches)

Interpretive groups
Land capability (nonirrigated): 6c
Ecological site: Semidesert Loam (R035XY325CO)

Typical profile
0 to 7 inches: Loam
7 to 14 inches: Clay loam
14 to 24 inches: Clay loam
24 to 36 inches: Sandy loam
36 to 40 inches: Unweathered bedrock

Minor Components
Abra
Percent of map unit: 5 percent
Pinon
Percent of map unit: 5 percent
Bowdish
Percent of map unit: 3 percent
Rock outcrop
Percent of map unit: 2 percent

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Bodot, dry, and similar soils: 45 percent
Ustic torriorthents and similar soils: 40 percent
Minor components: 15 percent

Description of Bodot, Dry

Setting
- **Landform:** Terraces, structural benches, landslides
- **Landform position (three-dimensional):** Tread, riser
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from shale

Properties and qualities
- **Slope:** 5 to 50 percent
- **Surface area covered with cobbles, stones or boulders:** 5.0 percent
- **Depth to restrictive feature:** 20 to 40 inches to paralithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 10 percent
- **Maximum salinity:** Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
- **Sodium adsorption ratio, maximum:** 10.0
- **Available water capacity:** Low (about 4.0 inches)

Interpretive groups
- **Land capability (nonirrigated):** 7e
- **Ecological site:** Basin Shale (R035XY408CO)

Typical profile
- **0 to 3 inches:** Cobbly clay loam
- **3 to 30 inches:** Cobbly silty clay
- **30 to 34 inches:** Weathered bedrock

Description of Ustic Torriorthents

Setting
- **Landform:** Structural benches, landslides, terraces
- **Landform position (three-dimensional):** Riser, tread
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from sandstone and shale

Properties and qualities
- **Slope:** 5 to 50 percent
- **Depth to restrictive feature:** 10 to 80 inches to lithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately low to moderately high (0.06 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 15 percent
- **Maximum salinity:** Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity:** Low (about 3.7 inches)
Interpretive groups

Land capability (nonirrigated): 7e

Typical profile

0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components

Rock outcrop
Percent of map unit: 10 percent

Pinon
Percent of map unit: 3 percent

Bowdish
Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting

Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition

Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent

Description of Gladel

Setting
Landform: Structural benches, mesas, escarpments
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 5 to 15 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 1.1 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 8 inches: Sandy loam
8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 6 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water capacity: Very low (about 2.6 inches)

Interpretive groups
Land capability (nonirrigated): 7s

Typical profile
0 to 3 inches: Fine sandy loam
3 to 16 inches: Clay loam
16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s
Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components
Paradox
 Percent of map unit: 5 percent
 Landform: Alluvial fans

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting
 Elevation: 4,900 to 6,500 feet
 Mean annual precipitation: 10 to 12 inches
 Mean annual air temperature: 47 to 49 degrees F
 Frost-free period: 120 to 140 days

Map Unit Composition
 Paradox and similar soils: 85 percent
 Minor components: 15 percent

Description of Paradox
Setting
 Landform: Valley floors, alluvial fans
 Down-slope shape: Linear
 Across-slope shape: Linear
 Parent material: Alluvium derived from sandstone

Properties and qualities
 Slope: 1 to 4 percent
 Depth to restrictive feature: More than 80 inches
 Drainage class: Well drained
 Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
 (0.60 to 2.00 in/hr)
 Depth to water table: More than 80 inches
 Frequency of flooding: None
 Frequency of ponding: None
 Calcium carbonate, maximum content: 15 percent
 Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
 Available water capacity: High (about 9.2 inches)

Interpretive groups
 Land capability classification (irrigated): 2e
 Land capability (nonirrigated): 6e
 Ecological site: Semidesert Sandy Loam (R035XY326CO)
Typical profile
0 to 5 inches: Fine sandy loam
5 to 19 inches: Fine sandy loam
19 to 60 inches: Loam

Minor Components

Ustic torriorthents
Percent of map unit: 10 percent
Landform: Drainageways

Gypsiorthids
Percent of map unit: 3 percent
Landform: Knobs

Begay
Percent of map unit: 2 percent
Landform: Knobs

76—Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Pinon and similar soils: 30 percent
Rock outcrop: 25 percent
Bowdish and similar soils: 25 percent
Minor components: 20 percent

Description of Pinon

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
Slope: 3 to 30 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 2.0 inches)

Interpretive groups

Land capability (nonirrigated): 7e

Typical profile

0 to 5 inches: Loam
5 to 16 inches: Gravelly loam
16 to 20 inches: Unweathered bedrock

Description of Bowdish

Setting

Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 3.0 inches)

Interpretive groups

Land capability (nonirrigated): 6e

Typical profile

0 to 5 inches: Loam
5 to 12 inches: Loam
12 to 23 inches: Gravelly loam
23 to 27 inches: Weathered bedrock

Description of Rock Outcrop

Setting

Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities

Slope: 3 to 30 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s
Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components

Progresso
Percent of map unit: 5 percent

Clapper
Percent of map unit: 5 percent

Barx
Percent of map unit: 5 percent

Ustic torriorthents
Percent of map unit: 5 percent

87—Rock outcrop

Map Unit Setting
Elevation: 4,700 to 10,000 feet
Mean annual precipitation: 10 to 22 inches
Mean annual air temperature: 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition
Rock outcrop: 90 percent
Minor components: 10 percent

Description of Rock Outcrop
Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 40 to 120 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock
Minor Components

Orthents

Percent of map unit: 10 percent
Landform: Draws

88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting

Elevation: 4,700 to 9,200 feet
Mean annual precipitation: 10 to 19 inches
Mean annual air temperature: 43 to 49 degrees F
Frost-free period: 70 to 140 days

Map Unit Composition

Rock outcrop: 50 percent
Orthents and similar soils: 45 percent
Minor components: 5 percent

Description of Rock Outcrop

Setting

Landform: Canyons, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities

Slope: 40 to 90 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.01 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock

Description of Orthents

Setting

Landform: Structural benches, canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Colluvium and residuum from sandstone and shale

Properties and qualities

Slope: 40 to 90 percent
Depth to restrictive feature: 10 to 80 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.2 inches)

Interpretive groups
Land capability (nonirrigated): 8e

Typical profile
0 to 1 inches: Stony loam
1 to 14 inches: Gravelly loam
14 to 24 inches: Very cobbly loam
24 to 60 inches: Very cobbly loam

Minor Components
Pinon
Percent of map unit: 5 percent
Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Farmland Classification (Cross Section through Paradox (North) Lease Tracts)

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Area of Interest (AOI)
 - Soil Map Units
- **Soil Ratings**
 - Not prime farmland
 - All areas are prime farmland
 - Prime farmland if drained
 - Prime farmland if protected from flooding or not frequently flooded during the growing season
 - Prime farmland if irrigated
 - Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
 - Prime farmland if irrigated and drained
 - Prime farmland if irrigated and reclaimed of excess salts and sodium
 - Farmland of statewide importance
 - Farmland of local importance
 - Farmland of unique importance
 - Not rated or not available

- **Major Roads**

- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Farmland Classification (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Not prime farmland</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not prime farmland</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Not prime farmland</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Prime farmland if irrigated</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>Not prime farmland</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>Not prime farmland</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>Not prime farmland</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Farmland Classification (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: No Aggregation Necessary

Tie-break Rule: Lower

Hydric Rating by Map Unit (Cross Section through Paradox (North) Lease Tracts)

This rating indicates the proportion of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is designated as "all hydric," "partially hydric," "not hydric," or "unknown hydric," depending on the rating of its respective components.

"All hydric" means that all components listed for a given map unit are rated as being hydric, while "not hydric" means that all components are rated as not hydric. "Partially hydric" means that at least one component of the map unit is rated as hydric, and at least one component is rated as not hydric. "Unknown hydric" indicates that at least one component is not rated so a definitive rating for the map unit cannot be made.
Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Custom Soil Resource Report
Map—Hydric Rating by Map Unit (Cross Section through Paradox (North) Lease Tracts)

San Miguel River
East Paradox Creek
State Hwy 141
State Hwy 90

Map Scale: 1:54,200 if printed on A size (8.5" x 11") sheet.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

All Hydric

Partially Hydric

Not Hydric

Unknown Hydric

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Hydric Rating by Map Unit (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Not Hydric</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not Hydric</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Not Hydric</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Not Hydric</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>Not Hydric</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>Not Hydric</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>Not Hydric</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Hydric Rating by Map Unit (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Absence/Presence

Tie-break Rule: Lower

Nonirrigated Capability Class (Cross Section through Paradox (North) Lease Tracts)

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations that show suitability and limitations of groups of soils for rangeland, for woodland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels—capability class, subclass, and unit. Only class and subclass are included in this data set.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:
Class 1 soils have few limitations that restrict their use.

Class 2 soils have moderate limitations that reduce the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that reduce the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that reduce the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.
Custom Soil Resource Report
Map—Nonirrigated Capability Class (Cross Section through Paradox (North) Lease Tracts)

Map Scale: 1:54,200 if printed on A size (8.5” x 11”) sheet.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- Capability Class - I
- Capability Class - II
- Capability Class - III
- Capability Class - IV
- Capability Class - V
- Capability Class - VI
- Capability Class - VII
- Capability Class - VIII
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Nonirrigated Capability Class (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>6</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>7</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>7</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>6</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>7</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>8</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>8</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Nonirrigated Capability Class (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Soil Taxonomy Classification (Cross Section through Paradox (North) Lease Tracts)

This rating presents the taxonomic classification based on Soil Taxonomy.

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2003). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. This table shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisols.
SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Udalfs (Ud, meaning humid, plus alfs, from Alfisols).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Hapludalfs (Hapl, meaning minimal horizonation, plus udalfs, the suborder of the Alfisols that has a udic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. An example is Typic Hapludalfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, active, mesic Typic Hapludalfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

References:

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. (The soils in a given survey area may have been classified according to earlier editions of this publication.)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

Fine, montmorillonitic (calcareous), mesic Ustic Torriorthents

Fine-loamy, mixed (calcareous), mesic Ustic Torriorthents

Fine-loamy, mixed, mesic Ustolic Haplargids

Loamy, mixed (calcareous), mesic Lithic Ustic Torriorthents

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Soil Taxonomy Classification (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Fine-loamy, mixed, mesic Ustollic Haplargids</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Fine, montmorillonitic (calcareous), mesic Ustic Torriorthents</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Loamy, mixed (calcareous), mesic Lithic Ustic Torriorthents</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Fine-loamy, mixed (calcareous), mesic Ustic Torriorthents</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Soil Taxonomy Classification (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Land Management

Land management interpretations are tools designed to guide the user in evaluating existing conditions in planning and predicting the soil response to various land management practices, for a variety of land uses, including cropland, forestland, hayland, pastureland, horticulture, and rangeland. Example interpretations include suitability for a variety of irrigation practices, log landings, haul roads and major skid trails, equipment operability, site preparation, suitability for hand and mechanical planting, potential erosion hazard associated with various practices, and ratings for fencing and waterline installation.
Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (North) Lease Tracts)

The ratings in this interpretation indicate the hazard of soil loss from off-road and off-trail areas after disturbance activities that expose the soil surface. The ratings are based on slope and soil erosion factor K. The soil loss is caused by sheet or rill erosion in off-road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," "severe," or "very severe." A rating of "slight" indicates that erosion is unlikely under ordinary climatic conditions; "moderate" indicates that some erosion is likely and that erosion-control measures may be needed; "severe" indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and "very severe" indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

Very severe
Severe
Moderate
Slight
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table: Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name</th>
<th>Rating reasons</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Slight</td>
<td>Barx (45%)</td>
<td></td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progresso (40%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.50)</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>Slight</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>1,109.6</td>
<td>53.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Erosion Hazard (Off-Road, Off-Trail) (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Erosion Hazard (Road, Trail) (Cross Section through Paradox (North) Lease Tracts)

The ratings in this interpretation indicate the hazard of soil loss from unsurfaced roads and trails. The ratings are based on soil erosion factor K, slope, and content of rock fragments.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," or "severe." A rating of "slight" indicates that little or no erosion is likely; "moderate" indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and "severe" indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

Very severe
Severe
Moderate
Slight
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Erosion Hazard (Road, Trail) (Cross Section through Paradox (North) Lease Tracts)

Erosion Hazard (Road, Trail)— Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Moderate</td>
<td>Barx (45%)</td>
<td>Slope/erodibility (0.50)</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progresso (40%)</td>
<td>Slope/erodibility (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Severe</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.95)</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gnadel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>Moderate</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>1,109.6</td>
<td>53.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Erosion Hazard (Road, Trail) (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher
Fugitive Dust Resistance (Cross Section through Paradox (North) Lease Tracts)

This interpretation rates the vulnerability of a soil for eroded soil particles to go into suspension during a windstorm. Fugitive dust can create extreme visibility reductions during severe windstorms creating traffic hazards and closing airports. Power outages, expensive cleanup costs, damage to computers and communications equipment from dust, transport of potentially harmful chemicals adhering to the soil particles, and loss of soil nutrients are some of the potential effects of fugitive dust. A positive impact is that nutrient enrichment can occur where fugitive dust is deposited.

Fugitive dust is a source of PM10 which is one of the seven air pollutants the Environmental Protection Agency regulates under the National Ambient Air Quality Standards (NAAQS). To a lesser extent, fugitive dust is a source of PM2.5 which has proposed regulations pending under NAAQS. PM10 and PM2.5 are defined as particulate matter with a mean diameter less than 10 microns and 2.5 microns respectively. These soil particles are very small, can remain suspended in the air for long periods of time, and are easily inhaled into the deep lungs. Increased risks of death and disease have been linked to periods of high outdoor PM10 and PM2.5 concentrations. These fine particles can potentially be lifted thousands of feet into the atmosphere and transported across continents and oceans creating global health, ecological, and climate change impacts.

The soil properties and qualities that affect fugitive dust are size of surface soil particles, rock fragment content, organic matter content, calcium carbonate equivalent, aggregate stability and presence of a stable soil crust. Clay particles have a strong propensity to form relatively large, durable soil aggregates and not contribute appreciably to fugitive dust unless these aggregates are broken down by intensive surface disturbance. Soil moisture and the presence of frozen soil also influence fugitive dust. Activities which break down soil aggregates and crusts increase wind erosion and production of fugitive dust.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which all of the soil features affect the formation of dust. "Low resistance" indicates that the soil has features that are very favorable for the formation of dust. "Moderate resistance" indicates that the soil has features that are favorable for dust formation. "High resistance" indicates that the soil has features that are unfavorable for dust formation.

Numerical ratings indicate the level of vulnerability of the soil for dust formation. The ratings are shown in decimal fractions ranging from 1.00 to 0.01. They indicate gradations between the point at which a soil feature resists dust formation (1.00) and the point at which the soil feature is favorable to the formation of dust (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each
component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Fugitive Dust Resistance (Cross Section through Paradox (North) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

Low resistance

Moderate resistance

High resistance

not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Fugitive Dust Resistance (Cross Section through Paradox (North) Lease Tracts)

Fugitive Dust Resistance— Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Moderate resistance to dust propagation</td>
<td>Barx (45%)</td>
<td>Component interpretable (0.00)</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No reduction of fugitive dust by rock fragments (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface texture dust propagation (0.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonate-related aggravation of fugitive dust (0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progresso (40%)</td>
<td>Component interpretable (0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No reduction of fugitive dust by rock fragments (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface texture dust propagation (0.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not rated</td>
<td>Ustic Torriorthents (40%)</td>
<td>Rock outcrop (10%)</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest
2,093.1 100.0%

Fugitive Dust Resistance— Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate resistance to dust propagation</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>2,044.7</td>
<td>97.7%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Rating Options—Fugitive Dust Resistance (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower

Soil Rutting Hazard (Cross Section through Paradox (North) Lease Tracts)

The ratings in this interpretation indicate the hazard of surface rut formation through the operation of forestland equipment. Soil displacement and puddling (soil deformation and compaction) may occur simultaneously with rutting.

Ratings are based on depth to a water table, rock fragments on or below the surface, the Unified classification of the soil, depth to a restrictive layer, and slope. The hazard is described as slight, moderate, or severe. A rating of "slight" indicates that the soil is subject to little or no rutting. "Moderate" indicates that rutting is likely. "Severe" indicates that ruts form readily.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Soil Rutting Hazard (Cross Section through Paradox (North) Lease Tracts)
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

Severe
Moderate
Slight
Not rated or not available

Political Features

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Soil Rutting Hazard—Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Severe</td>
<td>Barx (45%)</td>
<td>Low strength (1.00)</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progresso (40%)</td>
<td>Low strength (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Low strength (0.50)</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>Severe</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>1,109.6</td>
<td>53.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Soil Rutting Hazard (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher
Suitability for Roads (Natural Surface) (Cross Section through Paradox (North) Lease Tracts)

The ratings in this interpretation indicate the suitability for using the natural surface of the soil for roads. The ratings are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification of the soil, depth to a water table, ponding, flooding, and the hazard of soil slippage.

The ratings are both verbal and numerical. The soils are described as "well suited," "moderately suited," or "poorly suited" to this use. "Well suited" indicates that the soil has features that are favorable for the specified kind of roads and has no limitations. Good performance can be expected, and little or no maintenance is needed. "Moderately suited" indicates that the soil has features that are moderately favorable for the specified kind of roads. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. "Poorly suited" indicates that the soil has one or more properties that are unfavorable for the specified kind of roads. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Suitability for Roads (Natural Surface) (Cross Section through Paradox (North) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

Poorly suited
Moderately suited
Well suited
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Suitability for Roads (Natural Surface) (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Moderately suited</td>
<td>Barx (45%)</td>
<td>Low strength (0.50) Slope (0.50)</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progresso (40%)</td>
<td>Low strength (0.50) Slope (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Poorly suited</td>
<td>Bodot, dry (45%)</td>
<td>Slope (1.00) Rock fragments (1.00) Low strength (0.50) Ustic Torriorthents (40%) Slope (1.00) Low strength (0.50)</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Suitability for Roads (Natural Surface)—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorly suited</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>Moderately suited</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>1,109.6</td>
<td>53.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Suitability for Roads (Natural Surface) (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher
References

Custom Soil Resource Report for
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Cross Section through Paradox (North) Lease Tracts (Part 2)

January 9, 2012
Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

2
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>How Soil Surveys Are Made</td>
<td>5</td>
</tr>
<tr>
<td>Soil Map</td>
<td>7</td>
</tr>
<tr>
<td>Soil Map (Cross Section through Paradox (North) Lease Tracts)</td>
<td>8</td>
</tr>
<tr>
<td>Legend</td>
<td>9</td>
</tr>
<tr>
<td>Map Unit Legend (Cross Section through Paradox (North) Lease Tracts)</td>
<td>10</td>
</tr>
<tr>
<td>Map Unit Descriptions (Cross Section through Paradox (North) Lease Tracts)</td>
<td>10</td>
</tr>
<tr>
<td>San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties</td>
<td>12</td>
</tr>
<tr>
<td>17—Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>12</td>
</tr>
<tr>
<td>23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>13</td>
</tr>
<tr>
<td>45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>15</td>
</tr>
<tr>
<td>73—Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>17</td>
</tr>
<tr>
<td>76—Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>18</td>
</tr>
<tr>
<td>87—Rock outcrop</td>
<td>20</td>
</tr>
<tr>
<td>88—Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>21</td>
</tr>
<tr>
<td>Soil Information for All Uses</td>
<td>23</td>
</tr>
<tr>
<td>Soil Properties and Qualities</td>
<td>23</td>
</tr>
<tr>
<td>Soil Erosion Factors</td>
<td>23</td>
</tr>
<tr>
<td>K Factor, Whole Soil (Cross Section through Paradox (North) Lease Tracts)</td>
<td>23</td>
</tr>
<tr>
<td>Wind Erodibility Group (Cross Section through Paradox (North) Lease Tracts)</td>
<td>26</td>
</tr>
<tr>
<td>Soil Physical Properties</td>
<td>29</td>
</tr>
<tr>
<td>Available Water Capacity (Cross Section through Paradox (North) Lease Tracts)</td>
<td>29</td>
</tr>
<tr>
<td>Organic Matter (Cross Section through Paradox (North) Lease Tracts)</td>
<td>33</td>
</tr>
<tr>
<td>Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (North) Lease Tracts)</td>
<td>37</td>
</tr>
<tr>
<td>Soil Qualities and Features</td>
<td>41</td>
</tr>
<tr>
<td>Drainage Class (Cross Section through Paradox (North) Lease Tracts)</td>
<td>42</td>
</tr>
<tr>
<td>Hydrologic Soil Group (Cross Section through Paradox (North) Lease Tracts)</td>
<td>45</td>
</tr>
<tr>
<td>Parent Material Name (Cross Section through Paradox (North) Lease Tracts)</td>
<td>49</td>
</tr>
<tr>
<td>Water Features</td>
<td>53</td>
</tr>
<tr>
<td>Depth to Water Table (Cross Section through Paradox (North) Lease Tracts)</td>
<td>53</td>
</tr>
<tr>
<td>Flooding Frequency Class (Cross Section through Paradox (North) Lease Tracts)</td>
<td>58</td>
</tr>
<tr>
<td>Ponding Frequency Class (Cross Section through Paradox (North) Lease Tracts)</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
</tbody>
</table>
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report
Soil Map (Cross Section through Paradox (North) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Special Point Features

Blowout
Borrow Pit
Clay Spot
Closed Depression
Gravel Pit
Gravelly Spot
Landfill
Lava Flow
Marsh or swamp
Mine or Quarry
Miscellaneous Water
Perennial Water
Rock Outcrop
Saline Spot
Sandy Spot
Severely Eroded Spot
Sinkhole
Slide or Slip
Sodic Spot
Spoil Area
Stony Spot

Special Line Features

Very Stony Spot
Wet Spot
Other

Gully
Short Steep Slope
Other

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section through Paradox (North) Lease Tracts)

San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions (Cross Section through Paradox (North) Lease Tracts)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the
contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

17—Barx-Progresso complex, 3 to 12 percent slopes

Map Unit Setting
- **Elevation**: 5,300 to 6,800 feet
- **Mean annual precipitation**: 10 to 14 inches
- **Mean annual air temperature**: 46 to 48 degrees F
- **Frost-free period**: 110 to 130 days

Map Unit Composition
- **Barx and similar soils**: 45 percent
- **Progresso and similar soils**: 40 percent
- **Minor components**: 15 percent

Description of Barx

Setting
- **Landform**: Mesas, terraces
- **Landform position (three-dimensional)**: Tread
- **Down-slope shape**: Linear
- **Across-slope shape**: Linear
- **Parent material**: Alluvium derived from sandstone

Properties and qualities
- **Slope**: 3 to 12 percent
- **Depth to restrictive feature**: More than 80 inches
- **Drainage class**: Well drained
- **Capacity of the most limiting layer to transmit water (Ksat)**: Moderately high to high (0.60 to 2.00 in/hr)
- **Depth to water table**: More than 80 inches
- **Frequency of flooding**: None
- **Frequency of ponding**: None
- **Calcium carbonate, maximum content**: 45 percent
- **Maximum salinity**: Nonsaline to very slightly saline (2.0 to 4.0 mmhos/cm)
- **Sodium adsorption ratio, maximum**: 10.0
- **Available water capacity**: High (about 9.5 inches)

Interpretive groups
- **Land capability (nonirrigated)**: 6e
- **Ecological site**: Semidesert Sandy Loam (R035XY326CO)

Typical profile
- **0 to 2 inches**: Fine sandy loam
- **2 to 23 inches**: Sandy clay loam
- **23 to 74 inches**: Loam

Description of Progresso

Setting
- **Landform**: Mesas, terraces
- **Landform position (three-dimensional)**: Tread
- **Down-slope shape**: Linear
- **Across-slope shape**: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.3 inches)

Interpretive groups
Land capability (nonirrigated): 6c
Ecological site: Semidesert Loam (R035XY325CO)

Typical profile
0 to 7 inches: Loam
7 to 14 inches: Clay loam
14 to 24 inches: Clay loam
24 to 36 inches: Sandy loam
36 to 40 inches: Unweathered bedrock

Minor Components
Abra
Percent of map unit: 5 percent

Pinon
Percent of map unit: 5 percent

Bowdish
Percent of map unit: 3 percent

Rock outcrop
Percent of map unit: 2 percent

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Bodot, dry, and similar soils: 45 percent
Ustic torriorthents and similar soils: 40 percent
Minor components: 15 percent

Description of Bodot, Dry

Setting

Landform: Terraces, structural benches, landslides
Landform position (three-dimensional): Tread, riser
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from shale

Properties and qualities

Slope: 5 to 50 percent
Surface area covered with cobbles, stones or boulders: 5.0 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability (nonirrigated): 7e
Ecological site: Basin Shale (R035XY408CO)

Typical profile

0 to 3 inches: Cobbly clay loam
3 to 30 inches: Cobbly silty clay
30 to 34 inches: Weathered bedrock

Description of Ustic Torriorthents

Setting

Landform: Structural benches, landslides, terraces
Landform position (three-dimensional): Riser, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities

Slope: 5 to 50 percent
Depth to restrictive feature: 10 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 3.7 inches)
Interpretive groups

Land capability (nonirrigated): 7e

Typical profile

0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components

Rock outcrop
Percent of map unit: 10 percent

Pinon
Percent of map unit: 3 percent

Bowdish
Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting

Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition

Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent

Description of Gladel

Setting

Landform: Structural benches, mesas, escarpments
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities

Slope: 1 to 50 percent
Depth to restrictive feature: 5 to 15 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 1.1 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 8 inches: Sandy loam
8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 6 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water capacity: Very low (about 2.6 inches)

Interpretive groups
Land capability (nonirrigated): 7s

Typical profile
0 to 3 inches: Fine sandy loam
3 to 16 inches: Clay loam
16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s
Typical profile
0 to 60 inches: Unweathered bedrock

Minor Components

Paradox
Percent of map unit: 5 percent
Landform: Alluvial fans

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting
Elevation: 4,900 to 6,500 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 47 to 49 degrees F
Frost-free period: 120 to 140 days

Map Unit Composition
Paradox and similar soils: 85 percent
Minor components: 15 percent

Description of Paradox

Setting
Landform: Valley floors, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 1 to 4 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 9.2 inches)

Interpretive groups
Land capability classification (irrigated): 2e
Land capability (nonirrigated): 6e
Ecological site: Semidesert Sandy Loam (R035XY326CO)
Typical profile
0 to 5 inches: Fine sandy loam
5 to 19 inches: Fine sandy loam
19 to 60 inches: Loam

Minor Components

Us tic torriorthents
Percent of map unit: 10 percent
Landform: Drainageways

Gypsiorthids
Percent of map unit: 3 percent
Landform: Knobs

Begay
Percent of map unit: 2 percent
Landform: Knobs

76—Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes

Map Unit Setting
Elevation: 5,400 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Pinon and similar soils: 30 percent
Rock outcrop: 25 percent
Bowdish and similar soils: 25 percent
Minor components: 20 percent

Description of Pinon
Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
Slope: 3 to 30 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 2.0 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 5 inches: Loam
5 to 16 inches: Gravelly loam
16 to 20 inches: Unweathered bedrock

Description of Bowdish

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
Slope: 3 to 15 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: Low (about 3.0 inches)

Interpretive groups
Land capability (nonirrigated): 6e

Typical profile
0 to 5 inches: Loam
5 to 12 inches: Loam
12 to 23 inches: Gravelly loam
23 to 27 inches: Weathered bedrock

Description of Rock Outcrop

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities
Slope: 3 to 30 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s
Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Progresso
Percent of map unit: 5 percent

Clapper
Percent of map unit: 5 percent

Barx
Percent of map unit: 5 percent

Ustic torriorthents
Percent of map unit: 5 percent

87—Rock outcrop

Map Unit Setting

Elevation: 4,700 to 10,000 feet
Mean annual precipitation: 10 to 22 inches
Mean annual air temperature: 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition

Rock outcrop: 90 percent
Minor components: 10 percent

Description of Rock Outcrop

Setting

Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities

Slope: 40 to 120 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock
Minor Components

Orthents
Percent of map unit: 10 percent
Landform: Draws

88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting
Elevation: 4,700 to 9,200 feet
Mean annual precipitation: 10 to 19 inches
Mean annual air temperature: 43 to 49 degrees F
Frost-free period: 70 to 140 days

Map Unit Composition
Rock outcrop: 50 percent
Orthents and similar soils: 45 percent
Minor components: 5 percent

Description of Rock Outcrop
Setting
Landform: Canyons, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 40 to 90 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock

Description of Orthents
Setting
Landform: Structural benches, canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Colluvium and residuum from sandstone and shale

Properties and qualities
Slope: 40 to 90 percent
Depth to restrictive feature: 10 to 80 inches to paralithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.2 inches)

Interpretive groups
Land capability (nonirrigated): 8e

Typical profile
0 to 1 inches: Stony loam
1 to 14 inches: Gravelly loam
14 to 24 inches: Very cobbly loam
24 to 60 inches: Very cobbly loam

Minor Components
Pinon
Percent of map unit: 5 percent
Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Erosion Factors

Soil Erosion Factors are soil properties and interpretations used in evaluating the soil for potential erosion. Example soil erosion factors can include K factor for the whole soil or on a rock free basis, T factor, wind erodibility group and wind erodibility index.

K Factor, Whole Soil (Cross Section through Paradox (North) Lease Tracts)

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.
Custom Soil Resource Report
Map—K Factor, Whole Soil (Cross Section through Paradox (North) Lease Tracts)

Map Scale: 1:54,200 if printed on A size (8.5" x 11") sheet.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Interstate Highways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>US Routes</td>
</tr>
<tr>
<td>Soil Map Units</td>
<td>Major Roads</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td></td>
</tr>
<tr>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>.24</td>
<td></td>
</tr>
<tr>
<td>.28</td>
<td></td>
</tr>
<tr>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>.49</td>
<td></td>
</tr>
<tr>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>Not rated or not available</td>
<td></td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—K Factor, Whole Soil (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>20</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>.10</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>20</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>.20</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td></td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—K Factor, Whole Soil (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Layer Options: Surface Layer

Wind Erodibility Group (Cross Section through Paradox (North) Lease Tracts)

A wind erodibility group (WEG) consists of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4L</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Not rated or not available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Political Features</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Features</td>
<td>Streams and Canals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transportation</th>
<th>Rails</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interstate Highways</td>
</tr>
<tr>
<td></td>
<td>US Routes</td>
</tr>
<tr>
<td></td>
<td>Major Roads</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Wind Erodibility Group (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>3</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>5</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>3</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>3</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>4L</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>8</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest

| | | | 2,093.1 | 100.0% |

Rating Options—Wind Erodibility Group (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Soil Physical Properties

Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Available Water Capacity (Cross Section through Paradox (North) Lease Tracts)

Available water capacity (AWC) refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in centimeters of water per centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure, with corrections for salinity and rock fragments. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems.
systems. It is not an estimate of the quantity of water actually available to plants at any given time.

Available water supply (AWS) is computed as AWC times the thickness of the soil. For example, if AWC is 0.15 cm/cm, the available water supply for 25 centimeters of soil would be 0.15 x 25, or 3.75 centimeters of water.

For each soil layer, AWC is recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

<= 0.12

> 0.12 AND <= 0.14

> 0.14 AND <= 0.16

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Available Water Capacity (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters per centimeter)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>0.16</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.14</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>0.14</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.14</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>0.12</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Available Water Capacity (Cross Section through Paradox (North) Lease Tracts)

Units of Measure: centimeters per centimeter
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Organic Matter (Cross Section through Paradox (North) Lease Tracts)

Organic matter is the plant and animal residue in the soil at various stages of decomposition. The estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.
The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms. An irregular distribution of organic carbon with depth may indicate different episodes of soil deposition or soil formation. Soils that are very high in organic matter have poor engineering properties and subside upon drying.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Custom Soil Resource Report
Map—Organic Matter (Cross Section through Paradox (North) Lease Tracts)
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

<= 0.38
> 0.38 AND <= 0.46
> 0.46 AND <= 0.47
> 0.47 AND <= 1.29
> 1.29 AND <= 1.5
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Organic Matter (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (percent)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>0.46</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.38</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>1.50</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.47</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>1.29</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Organic Matter (Cross Section through Paradox (North) Lease Tracts)

- **Units of Measure:** percent
- **Aggregation Method:** Dominant Component
- **Component Percent Cutoff:** None Specified
- **Tie-break Rule:** Higher
- **Interpret Nulls as Zero:** No
- **Layer Options:** Depth Range
 - **Top Depth:** 0
 - **Bottom Depth:** 12
- **Units of Measure:** Inches

Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (North) Lease Tracts)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.
For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A “representative” value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - <= 0.014
 - > 0.014 AND <= 1.4267
 - > 1.4267 AND <= 9.17
 - > 9.17 AND <= 11.5233
 - > 11.5233 AND <= 28.23
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (micrometers per second)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>11.5233</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>1.4267</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>19.1267</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>28.2300</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>9.1700</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>0.0140</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>0.0140</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Saturated Hydraulic Conductivity (Ksat) (Cross Section through Paradox (North) Lease Tracts)

Units of Measure: micrometers per second
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Fastest
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.
Drainage Class (Cross Section through Paradox (North) Lease Tracts)

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Custom Soil Resource Report
Map—Drainage Class (Cross Section through Paradox (North) Lease Tracts)

Map Scale: 1:54,200 if printed on A size (8.5" x 11") sheet.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td></td>
</tr>
<tr>
<td>Excessively drained</td>
<td>Excessively drained</td>
</tr>
<tr>
<td>Somewhat excessively drained</td>
<td>Somewhat excessively drained</td>
</tr>
<tr>
<td>Well drained</td>
<td>Well drained</td>
</tr>
<tr>
<td>Moderately well drained</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>Somewhat poorly drained</td>
<td>Somewhat poorly drained</td>
</tr>
<tr>
<td>Poorly drained</td>
<td>Poorly drained</td>
</tr>
<tr>
<td>Very poorly drained</td>
<td>Very poorly drained</td>
</tr>
<tr>
<td>Subaqueous</td>
<td>Subaqueous</td>
</tr>
<tr>
<td>Not rated or not available</td>
<td>Not rated or not available</td>
</tr>
</tbody>
</table>

Political Features

- Cities

Water Features

- Streams and Canals

Transportation

- Rails
- Interstate Highways
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Drainage Class (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>Well drained</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Well drained</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Well drained</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Well drained</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>Well drained</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Drainage Class (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Hydrologic Soil Group (Cross Section through Paradox (North) Lease Tracts)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that
have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- A
- A/D
- B
- B/D
- C
- C/D
- D
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Hydrologic Soil Group (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>B</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>C</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>D</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>B</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>D</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>D</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>D</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Hydrologic Soil Group (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Parent Material Name (Cross Section through Paradox (North) Lease Tracts)

Parent material name is a term for the general physical, chemical, and mineralogical composition of the unconsolidated material, mineral or organic, in which the soil forms. Mode of deposition and/or weathering may be implied by the name.

The soil surveyor uses parent material to develop a model used for soil mapping. Soil scientists and specialists in other disciplines use parent material to help interpret soil boundaries and project performance of the material below the soil. Many soil properties relate to parent material. Among these properties are proportions of sand, silt, and clay; chemical content; bulk density; structure; and the kinds and amounts of rock fragments. These properties affect interpretations and may be criteria used to separate soil series. Soil properties and landscape information may imply the kind of parent material.
For each soil in the database, one or more parent materials may be identified. One is marked as the representative or most commonly occurring. The representative parent material name is presented here.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- alluvium derived from sandstone
- residuum weathered from interbedded sandstone and shale
- residuum weathered from sandstone
- residuum weathered from shale
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Parent Material Name (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>alluvium derived from sandstone</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>residuum weathered from shale</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>residuum weathered from sandstone</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>alluvium derived from sandstone</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>residuum weathered from interbedded sandstone and shale</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>residuum weathered from sandstone</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>residuum weathered from sandstone</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Parent Material Name (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower

Water Features

Water Features include ponding frequency, flooding frequency, and depth to water table.

Depth to Water Table (Cross Section through Paradox (North) Lease Tracts)

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.
This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Custom Soil Resource Report
Map—Depth to Water Table (Cross Section through Paradox (North) Lease Tracts)
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
- **Soil Ratings**
 - 0 - 25
 - 25 - 50
 - 50 - 100
 - 100 - 150
 - 150 - 200
 - > 200
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>>200</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>>200</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>>200</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>>200</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>>200</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>>200</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>>200</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Rating Options—Depth to Water Table (Cross Section through Paradox (North) Lease Tracts)

Units of Measure: centimeters
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Lower
Interpret Nulls as Zero: No
Beginning Month: January
Ending Month: December

Flooding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent.

"None" means that flooding is not probable. The chance of flooding is nearly 0 percent in any year. Flooding occurs less than once in 500 years.

"Very rare" means that flooding is very unlikely but possible under extremely unusual weather conditions. The chance of flooding is less than 1 percent in any year.

"Rare" means that flooding is unlikely but possible under unusual weather conditions. The chance of flooding is 1 to 5 percent in any year.

"Occasional" means that flooding occurs infrequently under normal weather conditions. The chance of flooding is 5 to 50 percent in any year.

"Frequent" means that flooding is likely to occur often under normal weather conditions. The chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year.

"Very frequent" means that flooding is likely to occur very often under normal weather conditions. The chance of flooding is more than 50 percent in all months of any year.
MAP LEGEND

Area of Interest (AOI)
- Gray

Soils
- Soil Map Units

Soil Ratings
- None
- Very Rare
- Rare
- Occasional
- Frequent
- Very Frequent

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Interstates
- US Routes
- Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Flooding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>None</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>None</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest

| | | | 2,093.1 | 100.0% |

Rating Options—Flooding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: More Frequent
Beginning Month: January
Ending Month: December

Ponding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

Ponding is standing water in a closed depression. The water is removed only by deep percolation, transpiration, or evaporation or by a combination of these processes. Ponding frequency classes are based on the number of times that ponding occurs over a given period. Frequency is expressed as none, rare, occasional, and frequent.

"None" means that ponding is not probable. The chance of ponding is nearly 0 percent in any year.

"Rare" means that ponding is unlikely but possible under unusual weather conditions. The chance of ponding is nearly 0 percent to 5 percent in any year.
“Occasional” means that ponding occurs, on the average, once or less in 2 years. The chance of ponding is 5 to 50 percent in any year.

“Frequent” means that ponding occurs, on the average, more than once in 2 years. The chance of ponding is more than 50 percent in any year.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

- None
- Rare
- Occasional
- Frequent

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

MAP INFORMATION

Map Scale: 1:54,200 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Ponding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Barx-Progresso complex, 3 to 12 percent slopes</td>
<td>None</td>
<td>48.3</td>
<td>2.3%</td>
</tr>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>935.1</td>
<td>44.7%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>72.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>336.3</td>
<td>16.1%</td>
</tr>
<tr>
<td>76</td>
<td>Pinon-Bowdish-Rock outcrop complex, 3 to 30 percent slopes</td>
<td>None</td>
<td>525.5</td>
<td>25.1%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>31.6</td>
<td>1.5%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>144.3</td>
<td>6.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>2,093.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Ponding Frequency Class (Cross Section through Paradox (North) Lease Tracts)

**Aggregation Method:** Dominant Condition

**Component Percent Cutoff:** None Specified

**Tie-break Rule:** More Frequent

**Beginning Month:** January

**Ending Month:** December
References

Custom Soil Resource Report

Custom Soil Resource Report for San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Cross Section through Paradox South LT 17 - Part 2

January 10, 2012
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface

How Soil Surveys Are Made

Soil Map

Soil Map (Cross Section Through Paradox South LT 17)

Legend

Map Unit Legend (Cross Section Through Paradox South LT 17)

Map Unit Descriptions (Cross Section Through Paradox South LT 17)

San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

60—Monogram loam, 1 to 8 percent slopes

73—Paradox fine sandy loam, 1 to 4 percent slopes

75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes

87—Rock outcrop

88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

95—Skein-Rock outcrop complex, 3 to 65 percent slopes

Soil Information for All Uses

Soil Properties and Qualities

Soil Erosion Factors

K Factor, Whole Soil (Cross Section Through Paradox South LT 17)

Wind Erodibility Group (Cross Section Through Paradox South LT 17)

Soil Physical Properties

Available Water Capacity (Cross Section Through Paradox South LT 17)

Organic Matter (Cross Section Through Paradox South LT 17)

Saturated Hydraulic Conductivity (Ksat) (Cross Section Through Paradox South LT 17)

Surface Texture (Cross Section Through Paradox South LT 17)

Soil Qualities and Features

Drainage Class (Cross Section Through Paradox South LT 17)

Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Parent Material Name (Cross Section Through Paradox South LT 17)

Water Features

Depth to Water Table (Cross Section Through Paradox South LT 17)

Flooding Frequency Class (Cross Section Through Paradox South LT 17)

Ponding Frequency Class (Cross Section Through Paradox South LT 17)

References
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Special Point Features
- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh or swamp
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot
- Spoil Area
- Stony Spot

Very Stony Spot
- Wet Spot
- Other

Special Line Features
- Gully
- Short Steep Slope
- Other

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions (Cross Section Through Paradox South LT 17)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified.
by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
- **Elevation:** 5,400 to 6,800 feet
- **Mean annual precipitation:** 10 to 12 inches
- **Mean annual air temperature:** 46 to 48 degrees F
- **Frost-free period:** 110 to 130 days

Map Unit Composition
- **Bodot, dry, and similar soils:** 45 percent
- **Ustic torriorthents and similar soils:** 40 percent
- **Minor components:** 15 percent

Description of Bodot, Dry

Setting
- **Landform:** Terraces, structural benches, landslides
- **Landform position (three-dimensional):** Tread, riser
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from shale

Properties and qualities
- **Slope:** 5 to 50 percent
- **Surface area covered with cobbles, stones or boulders:** 5.0 percent
- **Depth to restrictive feature:** 20 to 40 inches to paralithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 10 percent
- **Maximum salinity:** Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
- **Sodium adsorption ratio, maximum:** 10.0
- **Available water capacity:** Low (about 4.0 inches)

Interpretive groups
- **Land capability (nonirrigated):** 7e
- **Ecological site:** Basin Shale (R035XY408CO)

Typical profile
- **0 to 3 inches:** Cobbly clay loam
- **3 to 30 inches:** Cobbly silty clay
- **30 to 34 inches:** Weathered bedrock

Description of Ustic Torriorthents

Setting
- **Landform:** Structural benches, landslides, terraces
- **Landform position (three-dimensional):** Riser, tread
- **Down-slope shape:** Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities
Slope: 5 to 50 percent
Depth to restrictive feature: 10 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 3.7 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components
Rock outcrop
Percent of map unit: 10 percent
Pinon
Percent of map unit: 3 percent
Bowdish
Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting
Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent
Description of Gladel

Setting
 - Landform: Structural benches, mesas, escarpments
 - Down-slope shape: Linear
 - Across-slope shape: Linear
 - Parent material: Residuum weathered from sandstone

Properties and qualities
 - Slope: 1 to 50 percent
 - Depth to restrictive feature: 5 to 15 inches to lithic bedrock
 - Drainage class: Well drained
 - Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
 - Depth to water table: More than 80 inches
 - Frequency of flooding: None
 - Frequency of ponding: None
 - Calcium carbonate, maximum content: 5 percent
 - Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
 - Available water capacity: Very low (about 1.1 inches)

Interpretive groups
 - Land capability (nonirrigated): 7e

Typical profile
 - 0 to 8 inches: Sandy loam
 - 8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
 - Landform: Escarpments, mesas, structural benches
 - Down-slope shape: Linear
 - Across-slope shape: Linear
 - Parent material: Residuum weathered from sandstone

Properties and qualities
 - Slope: 1 to 50 percent
 - Depth to restrictive feature: 6 to 20 inches to lithic bedrock
 - Drainage class: Well drained
 - Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
 - Depth to water table: More than 80 inches
 - Frequency of flooding: None
 - Frequency of ponding: None
 - Calcium carbonate, maximum content: 5 percent
 - Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
 - Sodium adsorption ratio, maximum: 5.0
 - Available water capacity: Very low (about 2.6 inches)

Interpretive groups
 - Land capability (nonirrigated): 7s

Typical profile
 - 0 to 3 inches: Fine sandy loam
 - 3 to 16 inches: Clay loam
 - 16 to 20 inches: Unweathered bedrock
Description of Rock Outcrop

Setting

Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities

Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Paradox

Percent of map unit: 5 percent
Landform: Alluvial fans

60—Monogram loam, 1 to 8 percent slopes

Map Unit Setting

Elevation: 6,800 to 7,300 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 45 to 47 degrees F
Frost-free period: 90 to 120 days

Map Unit Composition

Monogram and similar soils: 85 percent
Minor components: 15 percent

Description of Monogram

Setting

Landform: Mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: High (about 10.1 inches)

Interpretive groups
Land capability (nonirrigated): 4e
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile
0 to 3 inches: Loam
3 to 14 inches: Loam
14 to 28 inches: Loam
28 to 60 inches: Sandy clay loam

Minor Components

Evanston
Percent of map unit: 5 percent

Progresso
Percent of map unit: 5 percent

Ackmen
Percent of map unit: 5 percent

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting
Elevation: 4,900 to 6,500 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 47 to 49 degrees F
Frost-free period: 120 to 140 days

Map Unit Composition
Paradox and similar soils: 85 percent
Minor components: 15 percent

Description of Paradox
Setting
Landform: Valley floors, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone
Properties and qualities

- **Slope**: 1 to 4 percent
- **Depth to restrictive feature**: More than 80 inches
- **Drainage class**: Well drained
- **Capacity of the most limiting layer to transmit water (Ksat)**: Moderately high to high (0.60 to 2.00 in/hr)
- **Depth to water table**: More than 80 inches
- **Frequency of flooding**: None
- **Frequency of ponding**: None
- **Calcium carbonate, maximum content**: 15 percent
- **Maximum salinity**: Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity**: High (about 9.2 inches)

Interpretive groups

- **Land capability classification (irrigated)**: 2e
- **Land capability (nonirrigated)**: 6e
- **Ecological site**: Semidesert Sandy Loam (R035XY326CO)

Typical profile

- **0 to 5 inches**: Fine sandy loam
- **5 to 19 inches**: Fine sandy loam
- **19 to 60 inches**: Loam

Minor Components

- **Ustic torriorthents**
 - **Percent of map unit**: 10 percent
 - **Landform**: Drainageways

- **Gypsiorthids**
 - **Percent of map unit**: 3 percent
 - **Landform**: Knobs

- **Begay**
 - **Percent of map unit**: 2 percent
 - **Landform**: Knobs

75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes

Map Unit Setting

- **Elevation**: 6,800 to 7,400 feet
- **Mean annual precipitation**: 13 to 15 inches
- **Mean annual air temperature**: 45 to 47 degrees F
- **Frost-free period**: 90 to 120 days

Map Unit Composition

- **Pinon, cool, and similar soils**: 35 percent
- **Bowdish, cool, and similar soils**: 30 percent
- **Progresso, cool, and similar soils**: 20 percent
- **Minor components**: 15 percent
Description of Pinon, Cool

Setting
- **Landform**: Mesas, ridges
- **Down-slope shape**: Linear
- **Across-slope shape**: Linear
- **Parent material**: Residuum weathered from interbedded sandstone and shale

Properties and qualities
- **Slope**: 1 to 12 percent
- **Depth to restrictive feature**: 10 to 20 inches to lithic bedrock
- **Drainage class**: Well drained
- **Capacity of the most limiting layer to transmit water (Ksat)**: Moderately low to moderately high (0.06 to 0.20 in/hr)
- **Depth to water table**: More than 80 inches
- **Frequency of flooding**: None
- **Frequency of ponding**: None
- **Calcium carbonate, maximum content**: 40 percent
- **Maximum salinity**: Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity**: Very low (about 2.0 inches)

Interpretive groups
- **Land capability (nonirrigated)**: 7s

Typical profile
- 0 to 5 inches: Loam
- 5 to 16 inches: Gravelly loam
- 16 to 20 inches: Unweathered bedrock

Description of Bowdish, Cool

Setting
- **Landform**: Mesas, ridges
- **Down-slope shape**: Linear
- **Across-slope shape**: Linear
- **Parent material**: Residuum weathered from interbedded sandstone and shale

Properties and qualities
- **Slope**: 1 to 12 percent
- **Depth to restrictive feature**: 20 to 40 inches to lithic bedrock
- **Drainage class**: Well drained
- **Capacity of the most limiting layer to transmit water (Ksat)**: Very low to moderately high (0.00 to 0.60 in/hr)
- **Depth to water table**: More than 80 inches
- **Frequency of flooding**: None
- **Frequency of ponding**: None
- **Calcium carbonate, maximum content**: 40 percent
- **Maximum salinity**: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
- **Sodium adsorption ratio, maximum**: 10.0
- **Available water capacity**: Low (about 3.0 inches)

Interpretive groups
- **Land capability (nonirrigated)**: 4e

Typical profile
- 0 to 5 inches: Loam
- 5 to 12 inches: Loam
Description of Progresso, Cool

Setting
- **Landform:** Mesas, ridges
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Alluvium derived from sandstone

Properties and qualities
- **Slope:** 1 to 12 percent
- **Depth to restrictive feature:** 20 to 40 inches to lithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately low to moderately high (0.06 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 35 percent
- **Maximum salinity:** Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity:** Low (about 5.3 inches)

Interpretive groups
- **Land capability (nonirrigated):** 6c
- **Ecological site:** Loamy Foothills (R034XY284CO)

Typical profile
- **0 to 7 inches:** Loam
- **7 to 14 inches:** Clay loam
- **14 to 24 inches:** Clay loam
- **24 to 36 inches:** Sandy loam
- **36 to 40 inches:** Unweathered bedrock

Minor Components
- **Rock outcrop**
 - **Percent of map unit:** 10 percent
- **Ustochreptic calcorthids**
 - **Percent of map unit:** 5 percent

87—Rock outcrop

Map Unit Setting
- **Elevation:** 4,700 to 10,000 feet
- **Mean annual precipitation:** 10 to 22 inches
- **Mean annual air temperature:** 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition
- Rock outcrop: 90 percent
- Minor components: 10 percent

Description of Rock Outcrop
Setting
- Landform: Canyons, mesas
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from sandstone

Properties and qualities
- Slope: 40 to 120 percent
- Depth to restrictive feature: 0 to 4 inches to lithic bedrock
- Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
- Land capability (nonirrigated): 8s

Typical profile
- 0 to 60 inches: Unweathered bedrock

Minor Components
Orthents
- Percent of map unit: 10 percent
- Landform: Draws

88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting
- Elevation: 4,700 to 9,200 feet
- Mean annual precipitation: 10 to 19 inches
- Mean annual air temperature: 43 to 49 degrees F
- Frost-free period: 70 to 140 days

Map Unit Composition
- Rock outcrop: 50 percent
- Orthents and similar soils: 45 percent
- Minor components: 5 percent

Description of Rock Outcrop
Setting
- Landform: Canyons, mesas, structural benches
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from sandstone
Properties and qualities

Slope: 40 to 90 percent

Depth to restrictive feature: 0 to 4 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock

Description of Orthents

Setting

Landform: Structural benches, canyons, mesas

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Colluvium and residuum from sandstone and shale

Properties and qualities

Slope: 40 to 90 percent

Depth to restrictive feature: 10 to 80 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water capacity: Moderate (about 6.2 inches)

Interpretive groups

Land capability (nonirrigated): 8e

Typical profile

0 to 1 inches: Stony loam

1 to 14 inches: Gravelly loam

14 to 24 inches: Very cobbly loam

24 to 60 inches: Very cobbly loam

Minor Components

Pinon

Percent of map unit: 5 percent

95—Skein-Rock outcrop complex, 3 to 65 percent slopes

Map Unit Setting

Elevation: 6,800 to 7,400 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 43 to 45 degrees F
Frost-free period: 90 to 110 days

Map Unit Composition
Skein and similar soils: 60 percent
Rock outcrop: 30 percent
Minor components: 10 percent

Description of Skein
Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
Slope: 3 to 40 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 2.4 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 6 inches: Loam
6 to 13 inches: Gravelly loam
13 to 19 inches: Very gravelly loam
19 to 23 inches: Unweathered bedrock

Description of Rock Outcrop
Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities
Slope: 15 to 65 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock
Minor Components

Gurley
Percent of map unit: 5 percent

Beje
Percent of map unit: 5 percent
Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Erosion Factors

Soil Erosion Factors are soil properties and interpretations used in evaluating the soil for potential erosion. Example soil erosion factors can include K factor for the whole soil or on a rock free basis, T factor, wind erodibility group and wind erodibility index.

K Factor, Whole Soil (Cross Section Through Paradox South LT 17)

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
 - Soil Ratings
 - .02
 - .05
 - .10
 - .15
 - .17
 - .20
 - .24
 - .28
 - .32
 - .37
 - .43
 - .49
 - .55
 - .64
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails

MAP INFORMATION

- Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.
- The soil surveys that comprise your AOI were mapped at 1:24,000.
- Warning: Soil Map may not be valid at this scale.
- Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
- Please rely on the bar scale on each map sheet for accurate map measurements.
- Source of Map: Natural Resources Conservation Service
- Coordinate System: UTM Zone 12N NAD83
- This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
- Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
- Survey Area Data: Version 7, May 3, 2011
- Date(s) aerial images were photographed: 8/28/2005
- The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—K Factor, Whole Soil (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>.10</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>.20</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>.43</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>.20</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>.32</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>.32</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—K Factor, Whole Soil (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Layer Options: Surface Layer

Wind Erodibility Group (Cross Section Through Paradox South LT 17)

A wind erodibility group (WEG) consists of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

1
2
3
4
4L
5
6
7
8
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads
Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Wind Erodibility Group (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>5</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>3</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>6</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>3</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>4L</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>8</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>6</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Wind Erodibility Group (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower

Soil Physical Properties

Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Available Water Capacity (Cross Section Through Paradox South LT 17)

Available water capacity (AWC) refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in centimeters of water per centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure, with corrections for salinity and rock fragments. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems.
systems. It is not an estimate of the quantity of water actually available to plants at any given time.

Available water supply (AWS) is computed as AWC times the thickness of the soil. For example, if AWC is 0.15 cm/cm, the available water supply for 25 centimeters of soil would be 0.15 x 25, or 3.75 centimeters of water.

For each soil layer, AWC is recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

<= 0.12
> 0.12 AND <= 0.14
> 0.14 AND <= 0.15
> 0.15 AND <= 0.18
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads
Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Available Water Capacity (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters per centimeter)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.14</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>0.14</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>0.18</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.14</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>0.12</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>0.15</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest

Rating Options—Available Water Capacity (Cross Section Through Paradox South LT 17)

Units of Measure: centimeters per centimeter
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Organic Matter (Cross Section Through Paradox South LT 17)

Organic matter is the plant and animal residue in the soil at various stages of decomposition. The estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.
The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms. An irregular distribution of organic carbon with depth may indicate different episodes of soil deposition or soil formation. Soils that are very high in organic matter have poor engineering properties and subside upon drying.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Map—Organic Matter (Cross Section Through Paradox South LT 17)

Custom Soil Resource Report

Map Scale: 1:29,400 if printed on A size (8.5" x 11") sheet.
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

<= 0.38
> 0.38 AND <= 0.47
> 0.47 AND <= 0.95
> 0.95 AND <= 1.38
> 1.38 AND <= 1.5
Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails
Interstate Highways
US Routes
Major Roads
Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Organic Matter (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (percent)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>0.38</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>1.50</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>0.95</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>0.47</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progreso loams, cool, 1 to 12 percent slopes</td>
<td>1.29</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>1.38</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest: 801.8 100.0%

Rating Options—Organic Matter (Cross Section Through Paradox South LT 17)

Units of Measure: percent
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Saturated Hydraulic Conductivity (Ksat) (Cross Section Through Paradox South LT 17)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.
For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- <= 0.014
- > 0.014 AND <= 1.4267
- > 1.4267 AND <= 4.5133
- > 4.5133 AND <= 9.17
- > 9.17 AND <= 28.23
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Saturated Hydraulic Conductivity (Ksat) (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (micrometers per second)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>1.4267</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>19.1267</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>4.5133</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>28.2300</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>9.1700</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>0.0140</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>0.0140</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>9.1700</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Saturated Hydraulic Conductivity (Ksat) (Cross Section Through Paradox South LT 17)

Units of Measure: micrometers per second
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Fastest
Interpret Nulls as Zero: No
Layer Options: Depth Range
Top Depth: 0
Bottom Depth: 12
Units of Measure: Inches

Surface Texture (Cross Section Through Paradox South LT 17)

This displays the representative texture class and modifier of the surface horizon.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction...
of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - cobbly clay loam
 - fine sandy loam
 - loam
 - sandy loam
 - unweathered bedrock
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Surface Texture (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>cobbly clay loam</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>sandy loam</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>loam</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>fine sandy loam</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>loam</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>unweathered bedrock</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>unweathered bedrock</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>loam</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Surface Texture (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Layer Options: Surface Layer

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.
Drainage Class (Cross Section Through Paradox South LT 17)

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
- **Soil Ratings**
 - Excessively drained
 - Somewhat excessively drained
 - Well drained
 - Moderately well drained
 - Somewhat poorly drained
 - Poorly drained
 - Very poorly drained
 - Subaqueous
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Drainage Class (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Well drained</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>Well drained</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>Well drained</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>Well drained</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>Well drained</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>Well drained</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Drainage Class (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- A
- A/D
- B
- B/D
- C
- C/D
- D
- Not rated or not available

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Hydrologic Soil Group — Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>C</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>D</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>B</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>B</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>C</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>D</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>D</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>D</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options — Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

A

A/D

B

B/D

C

C/D

D

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>C</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>D</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>B</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>B</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>C</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>D</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>D</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>D</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Hydrologic Soil Group (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Parent Material Name (Cross Section Through Paradox South LT 17)

Parent material name is a term for the general physical, chemical, and mineralogical composition of the unconsolidated material, mineral or organic, in which the soil forms. Mode of deposition and/or weathering may be implied by the name.

The soil surveyor uses parent material to develop a model used for soil mapping. Soil scientists and specialists in other disciplines use parent material to help interpret soil boundaries and project performance of the material below the soil. Many soil properties relate to parent material. Among these properties are proportions of sand, silt, and clay; chemical content; bulk density; structure; and the kinds and amounts of rock fragments. These properties affect interpretations and may be criteria used to separate soil series. Soil properties and landscape information may imply the kind of parent material.
For each soil in the database, one or more parent materials may be identified. One is marked as the representative or most commonly occurring. The representative parent material name is presented here.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - alluvium derived from sandstone
 - eolian deposits
 - residuum weathered from interbedded sandstone and shale
 - residuum weathered from sandstone
 - residuum weathered from shale
 - Not rated or not available
- **Political Features**
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Parent Material Name (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>residuum weathered from shale</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>residuum weathered from sandstone</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>eolian deposits</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>alluvium derived from sandstone</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>residuum weathered from interbedded sandstone and shale</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>residuum weathered from sandstone</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>residuum weathered from sandstone</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>residuum weathered from interbedded sandstone and shale</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td></td>
<td>Totals for Area of Interest</td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Parent Material Name (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

Water Features

Water Features include ponding frequency, flooding frequency, and depth to water table.

Depth to Water Table (Cross Section Through Paradox South LT 17)

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors.
(redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.
Custom Soil Resource Report
Map—Depth to Water Table (Cross Section Through Paradox South LT 17)

Map Scale: 1:29,400 if printed on A size (8.5" x 11") sheet.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Soil Ratings
- 0 - 25
- 25 - 50
- 50 - 100
- 100 - 150
- 150 - 200
- > 200

Political Features
- Cities

Water Features
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011
Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Depth to Water Table (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>>200</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>>200</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>>200</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>>200</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>>200</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>>200</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>>200</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>>200</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Rating Options—Depth to Water Table (Cross Section Through Paradox South LT 17)

Units of Measure: centimeters
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified
Tie-break Rule: Lower
Interpret Nulls as Zero: No
Beginning Month: January
Ending Month: December

Flooding Frequency Class (Cross Section Through Paradox South LT 17)

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent.

"None" means that flooding is not probable. The chance of flooding is nearly 0 percent in any year. Flooding occurs less than once in 500 years.

"Very rare" means that flooding is very unlikely but possible under extremely unusual weather conditions. The chance of flooding is less than 1 percent in any year.

"Rare" means that flooding is unlikely but possible under unusual weather conditions. The chance of flooding is 1 to 5 percent in any year.

"Occasional" means that flooding occurs infrequently under normal weather conditions. The chance of flooding is 5 to 50 percent in any year.

"Frequent" means that flooding is likely to occur often under normal weather conditions. The chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year.

"Very frequent" means that flooding is likely to occur very often under normal weather conditions. The chance of flooding is more than 50 percent in all months of any year.
Custom Soil Resource Report
Map—Flooding Frequency Class (Cross Section Through Paradox South LT 17)

Map Scale: 1:29,400 if printed on A size (8.5" x 11") sheet.

38° 10' 31"
38° 10' 35"
38° 8' 22"
38° 8' 17"
38° 8' 17"
38° 10' 35"
38° 10' 31"
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

None

Very Rare

Rare

Occasional

Frequent

Very Frequent

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Flooding Frequency Class (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>None</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>None</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>None</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Flooding Frequency Class (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: More Frequent

Beginning Month: January

Ending Month: December

Ponding Frequency Class (Cross Section Through Paradox South LT 17)

Ponding is standing water in a closed depression. The water is removed only by deep percolation, transpiration, or evaporation or by a combination of these processes. Ponding frequency classes are based on the number of times that ponding occurs over a given period. Frequency is expressed as none, rare, occasional, and frequent.

"None" means that ponding is not probable. The chance of ponding is nearly 0 percent in any year.

"Rare" means that ponding is unlikely but possible under unusual weather conditions. The chance of ponding is nearly 0 percent to 5 percent in any year.
"Occasional" means that ponding occurs, on the average, once or less in 2 years. The chance of ponding is 5 to 50 percent in any year.

"Frequent" means that ponding occurs, on the average, more than once in 2 years. The chance of ponding is more than 50 percent in any year.
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>![] Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>![] Soil Map Units</td>
</tr>
<tr>
<td>Soil Ratings</td>
<td>![] None</td>
</tr>
<tr>
<td></td>
<td>![] Rare</td>
</tr>
<tr>
<td></td>
<td>![] Occasional</td>
</tr>
<tr>
<td></td>
<td>![] Frequent</td>
</tr>
<tr>
<td>Political Features</td>
<td>![] Cities</td>
</tr>
<tr>
<td>Water Features</td>
<td>![] Streams and Canals</td>
</tr>
<tr>
<td>Transportation</td>
<td>![] Rails</td>
</tr>
<tr>
<td></td>
<td>![] Interstate Highways</td>
</tr>
<tr>
<td></td>
<td>![] US Routes</td>
</tr>
<tr>
<td></td>
<td>![] Major Roads</td>
</tr>
<tr>
<td></td>
<td>![] Local Roads</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Table—Ponding Frequency Class (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>None</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>None</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>None</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>None</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>None</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>None</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>None</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>None</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Ponding Frequency Class (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: More Frequent
Beginning Month: January
Ending Month: December
References

Custom Soil Resource Report for
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Cross Section through Paradox
South LT 17 - Part 1

January 10, 2012
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface .. 2
How Soil Surveys Are Made .. 5
Soil Map ... 7
 - Soil Map (Cross Section Through Paradox South LT 17)................................. 8
 - Legend.. 9
Map Unit Legend (Cross Section Through Paradox South LT 17) 10
Map Unit Descriptions (Cross Section Through Paradox South LT 17) 10
 - San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties... 12
 - 23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes.............. 12
 - 45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes............... 13
 - 60—Monogram loam, 1 to 8 percent slopes... 15
 - 73—Paradox fine sandy loam, 1 to 4 percent slopes.................................... 16
 - 75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes......... 17
 - 87—Rock outcrop... 19
 - 88—Rock outcrop-Orthents complex, 40 to 90 percent slopes............... 20
 - 95—Skein-Rock outcrop complex, 3 to 65 percent slopes.................... 21
Soil Information for All Uses .. 24
 - Suitabilities and Limitations for Use.. 24
 - Land Management.. 24
 - Erosion Hazard (Off-Road, Off-Trail) (Cross Section Through Paradox South LT 17) ... 24
 - Erosion Hazard (Road, Trail) (Cross Section Through Paradox South LT 17) .. 29
 - Fugitive Dust Resistance (Cross Section Through Paradox South LT 17) .. 33
 - Soil Rutting Hazard (Cross Section Through Paradox South LT 17) 38
 - Suitability for Roads (Natural Surface) (Cross Section Through Paradox South LT 17) ... 42
References .. 46
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report
Soil Map (Cross Section Through Paradox South LT 17)

Map Scale: 1:29,400 if printed on A size (8.5” x 11”) sheet.
MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions (Cross Section Through Paradox South LT 17)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified.
by a special symbol on the maps. If included in the database for a given area, the
contrasting minor components are identified in the map unit descriptions along with
some characteristics of each. A few areas of minor components may not have been
observed, and consequently they are not mentioned in the descriptions, especially
where the pattern was so complex that it was impractical to make enough observations
to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness
or accuracy of the data. The objective of mapping is not to delineate pure taxonomic
classes but rather to separate the landscape into landforms or landform segments that
have similar use and management requirements. The delineation of such segments
on the map provides sufficient information for the development of resource plans. If
intensive use of small areas is planned, however, onsite investigation is needed to
define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each
description includes general facts about the unit and gives important soil properties
and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major horizons
that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity,
degree of erosion, and other characteristics that affect their use. On the basis of such
differences, a soil series is divided into soil phases. Most of the areas shown on the
detailed soil maps are phases of soil series. The name of a soil phase commonly
indicates a feature that affects use or management. For example, Alpha silt loam, 0
to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps. The
pattern and proportion of the soils or miscellaneous areas are somewhat similar in all
areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present or
anticipated uses of the map units in the survey area, it was not considered practical
or necessary to map the soils or miscellaneous areas separately. The pattern and
relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-
Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that
could be mapped individually but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion of
the soils or miscellaneous areas in a mapped area are not uniform. An area can be
made up of only one of the major soils or miscellaneous areas, or it can be made up
of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material
and support little or no vegetation. Rock outcrop is an example.
San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties

23—Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes

Map Unit Setting
- **Elevation:** 5,400 to 6,800 feet
- **Mean annual precipitation:** 10 to 12 inches
- **Mean annual air temperature:** 46 to 48 degrees F
- **Frost-free period:** 110 to 130 days

Map Unit Composition
- **Bodot, dry, and similar soils:** 45 percent
- **Ustic torriorthents and similar soils:** 40 percent
- **Minor components:** 15 percent

Description of Bodot, Dry

Setting
- **Landform:** Terraces, structural benches, landslides
- **Landform position (three-dimensional):** Tread, riser
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Residuum weathered from shale

Properties and qualities
- **Slope:** 5 to 50 percent
- **Surface area covered with cobbles, stones or boulders:** 5.0 percent
- **Depth to restrictive feature:** 20 to 40 inches to paralithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 0.20 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 10 percent
- **Maximum salinity:** Nonsaline to slightly saline (2.0 to 8.0 mmhos/cm)
- **Sodium adsorption ratio, maximum:** 10.0
- **Available water capacity:** Low (about 4.0 inches)

Interpretive groups
- **Land capability (nonirrigated):** 7e
- **Ecological site:** Basin Shale (R035XY408CO)

Typical profile
- 0 to 3 inches: Cobbly clay loam
- 3 to 30 inches: Cobbly silty clay
- 30 to 34 inches: Weathered bedrock

Description of Ustic Torriorthents

Setting
- **Landform:** Structural benches, landslides, terraces
- **Landform position (three-dimensional):** Riser, tread
- **Down-slope shape:** Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities
Slope: 5 to 50 percent
Depth to restrictive feature: 10 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 3.7 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 4 inches: Very bouldery clay loam
4 to 31 inches: Cobbly clay loam
31 to 35 inches: Unweathered bedrock

Minor Components
Rock outcrop
Percent of map unit: 10 percent

Pinon
Percent of map unit: 3 percent

Bowdish
Percent of map unit: 2 percent

45—Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes

Map Unit Setting
Elevation: 5,500 to 6,800 feet
Mean annual precipitation: 10 to 14 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 110 to 130 days

Map Unit Composition
Gladel and similar soils: 35 percent
Rock outcrop: 30 percent
Bond and similar soils: 30 percent
Minor components: 5 percent
Description of Gladel

Setting
Landform: Structural benches, mesas, escarpments
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 5 to 15 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 1.1 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 8 inches: Sandy loam
8 to 12 inches: Unweathered bedrock

Description of Bond

Setting
Landform: Escarpments, mesas, structural benches
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone

Properties and qualities
Slope: 1 to 50 percent
Depth to restrictive feature: 6 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water capacity: Very low (about 2.6 inches)

Interpretive groups
Land capability (nonirrigated): 7s

Typical profile
0 to 3 inches: Fine sandy loam
3 to 16 inches: Clay loam
16 to 20 inches: Unweathered bedrock
Description of Rock Outcrop

Setting

- Landform: Escarpments, mesas, structural benches
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from sandstone

Properties and qualities

- Slope: 1 to 50 percent
- Depth to restrictive feature: 0 to 4 inches to lithic bedrock
- Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups

- Land capability (nonirrigated): 8s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Paradox

- Percent of map unit: 5 percent
- Landform: Alluvial fans

60—Monogram loam, 1 to 8 percent slopes

Map Unit Setting

- Elevation: 6,800 to 7,300 feet
- Mean annual precipitation: 13 to 15 inches
- Mean annual air temperature: 45 to 47 degrees F
- Frost-free period: 90 to 120 days

Map Unit Composition

- Monogram and similar soils: 85 percent
- Minor components: 15 percent

Description of Monogram

Setting

- Landform: Mesas, structural benches
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Eolian deposits

Properties and qualities

- Slope: 1 to 8 percent
- Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 10.0
Available water capacity: High (about 10.1 inches)

Interpretive groups
Land capability (nonirrigated): 4e
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile
0 to 3 inches: Loam
3 to 14 inches: Loam
14 to 28 inches: Loam
28 to 60 inches: Sandy clay loam

Minor Components
Evanston
Percent of map unit: 5 percent
Progresso
Percent of map unit: 5 percent
Ackmen
Percent of map unit: 5 percent

73—Paradox fine sandy loam, 1 to 4 percent slopes

Map Unit Setting
Elevation: 4,900 to 6,500 feet
Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 47 to 49 degrees F
Frost-free period: 120 to 140 days

Map Unit Composition
Paradox and similar soils: 85 percent
Minor components: 15 percent

Description of Paradox
Setting
Landform: Valley floors, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone
Properties and qualities

Slope: 1 to 4 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e
Land capability (nonirrigated): 6e
Ecological site: Semidesert Sandy Loam (R035XY326CO)

Typical profile

0 to 5 inches: Fine sandy loam
5 to 19 inches: Fine sandy loam
19 to 60 inches: Loam

Minor Components

Ustic torriorthents
Percent of map unit: 10 percent
Landform: Drainageways

Gypsiorthids
Percent of map unit: 3 percent
Landform: Knobs

Begay
Percent of map unit: 2 percent
Landform: Knobs

75—Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes

Map Unit Setting
Elevation: 6,800 to 7,400 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 45 to 47 degrees F
Frost-free period: 90 to 120 days

Map Unit Composition
Pinon, cool, and similar soils: 35 percent
Bowdish, cool, and similar soils: 30 percent
Progresso, cool, and similar soils: 20 percent
Minor components: 15 percent
Description of Pinon, Cool

Setting
- Landform: Mesas, ridges
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
- Slope: 1 to 12 percent
- Depth to restrictive feature: 10 to 20 inches to lithic bedrock
- Drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 40 percent
- Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
- Available water capacity: Very low (about 2.0 inches)

Interpretive groups
- Land capability (nonirrigated): 7s

Typical profile
- 0 to 5 inches: Loam
- 5 to 16 inches: Gravelly loam
- 16 to 20 inches: Unweathered bedrock

Description of Bowdish, Cool

Setting
- Landform: Mesas, ridges
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
- Slope: 1 to 12 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.60 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 40 percent
- Maximum salinity: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
- Sodium adsorption ratio, maximum: 10.0
- Available water capacity: Low (about 3.0 inches)

Interpretive groups
- Land capability (nonirrigated): 4e

Typical profile
- 0 to 5 inches: Loam
- 5 to 12 inches: Loam
12 to 23 inches: Gravelly loam
23 to 27 inches: Weathered bedrock

Description of Progresso, Cool

Setting
Landform: Mesas, ridges
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Properties and qualities
Slope: 1 to 12 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.3 inches)

Interpretive groups
Land capability (nonirrigated): 6c
Ecological site: Loamy Foothills (R034XY284CO)

Typical profile
0 to 7 inches: Loam
7 to 14 inches: Clay loam
14 to 24 inches: Clay loam
24 to 36 inches: Sandy loam
36 to 40 inches: Unweathered bedrock

Minor Components
Rock outcrop
Percent of map unit: 10 percent

Ustochreptic calciphilids
Percent of map unit: 5 percent

87—Rock outcrop

Map Unit Setting
Elevation: 4,700 to 10,000 feet
Mean annual precipitation: 10 to 22 inches
Mean annual air temperature: 40 to 49 degrees F
Frost-free period: 65 to 140 days

Map Unit Composition
- Rock outcrop: 90 percent
- Minor components: 10 percent

Description of Rock Outcrop

Setting
- Landform: Canyons, mesas
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from sandstone

Properties and qualities
- Slope: 40 to 120 percent
- Depth to restrictive feature: 0 to 4 inches to lithic bedrock
- Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
- Land capability (nonirrigated): 8s

Typical profile
- 0 to 60 inches: Unweathered bedrock

Minor Components
- Orthents
 - Percent of map unit: 10 percent
 - Landform: Draws

88—Rock outcrop-Orthents complex, 40 to 90 percent slopes

Map Unit Setting
- Elevation: 4,700 to 9,200 feet
- Mean annual precipitation: 10 to 19 inches
- Mean annual air temperature: 43 to 49 degrees F
- Frost-free period: 70 to 140 days

Map Unit Composition
- Rock outcrop: 50 percent
- Orthents and similar soils: 45 percent
- Minor components: 5 percent

Description of Rock Outcrop

Setting
- Landform: Canyons, mesas, structural benches
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from sandstone
Properties and qualities
- **Slope:** 40 to 90 percent
- **Depth to restrictive feature:** 0 to 4 inches to lithic bedrock
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
- **Land capability (nonirrigated):** 8s

Typical profile
- **0 to 60 inches:** Unweathered bedrock

Description of Orthents

Setting
- **Landform:** Structural benches, canyons, mesas
- **Down-slope shape:** Linear
- **Across-slope shape:** Linear
- **Parent material:** Colluvium and residuum from sandstone and shale

Properties and qualities
- **Slope:** 40 to 90 percent
- **Depth to restrictive feature:** 10 to 80 inches to paralithic bedrock
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to high (0.20 to 1.98 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum content:** 40 percent
- **Maximum salinity:** Nonsaline (0.0 to 2.0 mmhos/cm)
- **Available water capacity:** Moderate (about 6.2 inches)

Interpretive groups
- **Land capability (nonirrigated):** 8e

Typical profile
- **0 to 1 inches:** Stony loam
- **1 to 14 inches:** Gravelly loam
- **14 to 24 inches:** Very cobbly loam
- **24 to 60 inches:** Very cobbly loam

Minor Components

Pinon
- **Percent of map unit:** 5 percent

95—Skein-Rock outcrop complex, 3 to 65 percent slopes

Map Unit Setting
- **Elevation:** 6,800 to 7,400 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 43 to 45 degrees F
Frost-free period: 90 to 110 days

Map Unit Composition
Skein and similar soils: 60 percent
Rock outcrop: 30 percent
Minor components: 10 percent

Description of Skein
Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from interbedded sandstone and shale

Properties and qualities
Slope: 3 to 40 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Very low (about 2.4 inches)

Interpretive groups
Land capability (nonirrigated): 7e

Typical profile
0 to 6 inches: Loam
6 to 13 inches: Gravelly loam
13 to 19 inches: Very gravelly loam
19 to 23 inches: Unweathered bedrock

Description of Rock Outcrop
Setting
Landform: Canyons, mesas
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Residuum weathered from sandstone and shale

Properties and qualities
Slope: 15 to 65 percent
Depth to restrictive feature: 0 to 4 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.00 in/hr)

Interpretive groups
Land capability (nonirrigated): 8s

Typical profile
0 to 60 inches: Unweathered bedrock
Minor Components

Gurley
Percent of map unit: 5 percent

Beje
Percent of map unit: 5 percent
Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Management

Land management interpretations are tools designed to guide the user in evaluating existing conditions in planning and predicting the soil response to various land management practices, for a variety of land uses, including cropland, forestland, hayland, pastureland, horticulture, and rangeland. Example interpretations include suitability for a variety of irrigation practices, log landings, haul roads and major skid trails, equipment operability, site preparation, suitability for hand and mechanical planting, potential erosion hazard associated with various practices, and ratings for fencing and waterline installation.

Erosion Hazard (Off-Road, Off-Trail) (Cross Section Through Paradox South LT 17)

The ratings in this interpretation indicate the hazard of soil loss from off-road and off-trail areas after disturbance activities that expose the soil surface. The ratings are based on slope and soil erosion factor K. The soil loss is caused by sheet or rill erosion in off-road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," "severe," or "very severe." A rating of "slight" indicates that erosion is unlikely under ordinary climatic conditions; "moderate" indicates that some erosion is likely and that erosion-control measures may be needed; "severe" indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and "very severe" indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.
Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

Very severe

Severe

Moderate

Slight

Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Erosion Hazard (Off-Road, Off-Trail)—Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.50)</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest | 801.8 | 100.0%

Erosion Hazard (Off-Road, Off-Trail)—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>521.2</td>
<td>65.0%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest | 801.8 | 100.0%

Rating Options—Erosion Hazard (Off-Road, Off-Trail) (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Erosion Hazard (Road, Trail) (Cross Section Through Paradox South LT 17)

The ratings in this interpretation indicate the hazard of soil loss from unsurfaced roads and trails. The ratings are based on soil erosion factor K, slope, and content of rock fragments.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," or "severe." A rating of "slight" indicates that little or no erosion is likely; "moderate" indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and "severe" indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report
Map—Erosion Hazard (Road, Trail) (Cross Section Through Paradox South LT 17)
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
- **Soil Ratings**
 - Very severe
 - Severe
 - Moderate
 - Slight
 - Not rated or not available
- **Political Features**
- **Water Features**
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

- **Map Scale:** 1:29,400 if printed on A size (8.5" × 11") sheet.
- The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

- **Source of Map:** Natural Resources Conservation Service
- **Web Soil Survey URL:** http://websoilsurvey.nrcs.usda.gov
- **Coordinate System:** UTM Zone 12N NAD83
- **This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.**
- **Soil Survey Area:** San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
- **Survey Area Data:** Version 7, May 3, 2011
- **Date(s) aerial images were photographed:** 8/28/2005
- **The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.**
Erosion Hazard (Road, Trail) — Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Severe</td>
<td>Bodot, dry (45%)</td>
<td>Slope/erodibility (0.95)</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope/erodibility (0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Erosion Hazard (Road, Trail) — Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>521.2</td>
<td>65.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Erosion Hazard (Road, Trail) (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher
Fugitive Dust Resistance (Cross Section Through Paradox South LT 17)

This interpretation rates the vulnerability of a soil for eroded soil particles to go into suspension during a windstorm. Fugitive dust can create extreme visibility reductions during severe windstorms creating traffic hazards and closing airports. Power outages, expensive cleanup costs, damage to computers and communications equipment from dust, transport of potentially harmful chemicals adhering to the soil particles, and loss of soil nutrients are some of the potential effects of fugitive dust. A positive impact is that nutrient enrichment can occur where fugitive dust is deposited.

Fugitive dust is a source of PM10 which is one of the seven air pollutants the Environmental Protection Agency regulates under the National Ambient Air Quality Standards (NAAQS). To a lesser extent, fugitive dust is a source of PM2.5 which has proposed regulations pending under NAAQS. PM10 and PM2.5 are defined as particulate matter with a mean diameter less than 10 microns and 2.5 microns respectively. These soil particles are very small, can remain suspended in the air for long periods of time, and are easily inhaled into the deep lungs. Increased risks of death and disease have been linked to periods of high outdoor PM10 and PM2.5 concentrations. These fine particles can potentially be lifted thousands of feet into the atmosphere and transported across continents and oceans creating global health, ecological, and climate change impacts.

The soil properties and qualities that affect fugitive dust are size of surface soil particles, rock fragment content, organic matter content, calcium carbonate equivalent, aggregate stability and presence of a stable soil crust. Clay particles have a strong propensity to form relatively large, durable soil aggregates and not contribute appreciably to fugitive dust unless these aggregates are broken down by intensive surface disturbance. Soil moisture and the presence of frozen soil also influence fugitive dust. Activities which break down soil aggregates and crusts increase wind erosion and production of fugitive dust.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which all of the soil features affect the formation of dust. "Low resistance" indicates that the soil has features that are very favorable for the formation of dust. "Moderate resistance" indicates that the soil has features that are favorable for dust formation. "High resistance" indicates that the soil has features that are unfavorable for dust formation.

Numerical ratings indicate the level of vulnerability of the soil for dust formation. The ratings are shown in decimal fractions ranging from 1.00 to 0.01. They indicate gradations between the point at which a soil feature resists dust formation (1.00) and the point at which the soil feature is favorable to the formation of dust (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each
component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

<table>
<thead>
<tr>
<th>MAP LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Interest (AOI)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soils</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soil Ratings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Political Features</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Water Features</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Transportation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAP INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Scale: 1:29,400 if printed on a size (8.5” × 11”) sheet.</td>
</tr>
<tr>
<td>The soil surveys that comprise your AOI were mapped at 1:24,000.</td>
</tr>
<tr>
<td>Warning: Soil Map may not be valid at this scale.</td>
</tr>
<tr>
<td>Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.</td>
</tr>
<tr>
<td>Please rely on the bar scale on each map sheet for accurate map measurements.</td>
</tr>
<tr>
<td>Source of Map: Natural Resources Conservation Service</td>
</tr>
<tr>
<td>Coordinate System: UTM Zone 12N NAD83</td>
</tr>
<tr>
<td>This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.</td>
</tr>
<tr>
<td>Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties</td>
</tr>
<tr>
<td>Survey Area Data: Version 7, May 3, 2011</td>
</tr>
<tr>
<td>Date(s) aerial images were photographed: 8/28/2005</td>
</tr>
<tr>
<td>The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.</td>
</tr>
</tbody>
</table>
Tables—Fugitive Dust Resistance (Cross Section Through Paradox South LT 17)

Fugitive Dust Resistance— Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Not rated</td>
<td>Ustic Torriorthents (40%)</td>
<td></td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock outcrop (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Fugitive Dust Resistance— Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null or Not Rated</td>
<td>801.8</td>
<td>100.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Fugitive Dust Resistance (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Lower
Soil Rutting Hazard (Cross Section Through Paradox South LT 17)

The ratings in this interpretation indicate the hazard of surface rut formation through the operation of forestland equipment. Soil displacement and puddling (soil deformation and compaction) may occur simultaneously with rutting.

Ratings are based on depth to a water table, rock fragments on or below the surface, the Unified classification of the soil, depth to a restrictive layer, and slope. The hazard is described as slight, moderate, or severe. A rating of "slight" indicates that the soil is subject to little or no rutting. "Moderate" indicates that rutting is likely. "Severe" indicates that ruts form readily.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

MAP LEGEND

- **Area of Interest (AOI)**
- **Soils**
 - Soil Map Units
- **Soil Ratings**
 - Severe
 - Moderate
 - Slight
 - Not rated or not available
- **Political Features**
 - Cities
- **Water Features**
 - Streams and Canals
- **Transportation**
 - Rails
 - Interstate Highways
 - US Routes
 - Major Roads
 - Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Soil Rutting Hazard (Cross Section Through Paradox South LT 17)

Soil Rutting Hazard—Summary by Map Unit — San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties (CO675)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Moderate</td>
<td>Bodot, dry (45%)</td>
<td>Low strength (0.50)</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Soil Rutting Hazard—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td>Null or Not Rated</td>
<td>521.2</td>
<td>65.0%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Soil Rutting Hazard (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Suitability for Roads (Natural Surface) (Cross Section Through Paradox South LT 17)

The ratings in this interpretation indicate the suitability for using the natural surface of the soil for roads. The ratings are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification of the soil, depth to a water table, ponding, flooding, and the hazard of soil slippage.

The ratings are both verbal and numerical. The soils are described as "well suited," "moderately suited," or "poorly suited" to this use. "Well suited" indicates that the soil has features that are favorable for the specified kind of roads and has no limitations. Good performance can be expected, and little or no maintenance is needed. "Moderately suited" indicates that the soil has features that are moderately favorable for the specified kind of roads. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. "Poorly suited" indicates that the soil has one or more properties that are unfavorable for the specified kind of roads. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.
Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

- Poorly suited
- Moderately suited
- Well suited
- Not rated or not available

Political Features

Cities

Water Features

Streams and Canals

Transportation

- Rails
- Interstate Highways
- US Routes
- Major Roads
- Local Roads

MAP INFORMATION

Map Scale: 1:29,400 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 12N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Miguel Area, Colorado, Parts of Dolores, Montrose, and San Miguel Counties
Survey Area Data: Version 7, May 3, 2011

Date(s) aerial images were photographed: 8/28/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Tables—Suitability for Roads (Natural Surface) (Cross Section Through Paradox South LT 17)

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name</th>
<th>Rating reasons (numeric values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bodot, dry-Ustic Torriorthents complex, 5 to 50 percent slopes</td>
<td>Poorly suited</td>
<td>Bodot, dry (45%)</td>
<td>Slope (1.00)</td>
<td>280.6</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock fragments (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ustic Torriorthents (40%)</td>
<td>Slope (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low strength (0.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gladel-Bond-Rock outcrop complex, 1 to 50 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>192.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>60</td>
<td>Monogram loam, 1 to 8 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>46.5</td>
<td>5.8%</td>
</tr>
<tr>
<td>73</td>
<td>Paradox fine sandy loam, 1 to 4 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td>1.2%</td>
</tr>
<tr>
<td>75</td>
<td>Pinon-Bowdish-Progresso loams, cool, 1 to 12 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>127.2</td>
<td>15.9%</td>
</tr>
<tr>
<td>87</td>
<td>Rock outcrop</td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>88</td>
<td>Rock outcrop-Orthents complex, 40 to 90 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>106.3</td>
<td>13.3%</td>
</tr>
<tr>
<td>95</td>
<td>Skein-Rock outcrop complex, 3 to 65 percent slopes</td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>801.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Rating Options—Suitability for Roads (Natural Surface) (Cross Section Through Paradox South LT 17)

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher
References

